首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In order to protect Ni–Cr alloys from high-temperature corrosion, a new heat-resistant glass-ceramic coating was developed with a glass matrix synthesized on the basis of a composite R x O–Al2O3–SiO2–TiO2 (R–Li, Na+, K+, Mg2+, Ca2+, Ba2+) system. The special features of the formation of crystalline phases in the glasses in heat treatment and the optimum regime for the formation of a glass ceramic structure are described.Translated from Steklo i Keramika, No. 3, pp. 30–32, March, 1996.  相似文献   

2.
Reactions of K2Cr2O7 and K2CrO4 with Me3SnCl yielded [(Me3Sn)2CrO4] (1) and [(Me3Sn)2CrO4(Me3SnOH)] (2), respectively, which were characterized by elemental analysis, 1H-NMR spectroscopy, and an X-ray diffraction study. Compound 1 shows a novel square grid-like structure consisting of CrO4 2– and Me3Sn+ ions, whereas 2 exhibits a three-dimensional structure composed of CrO4 2–, Me3Sn+, and [(Me3Sn)2SnOH]+ ions.  相似文献   

3.
The interaction between titanium and Ti4+ ions (K2TiF6), the electroreduction reaction of Ti4+ ions and the anodic reaction of Ti in KCl–NaCl–KF melts with K2TiF6 at 973 K were studied by means of electrochemical and physical measurements. It was found that the fluoride ions played a very important role in these reactionsIn KCl–NaCl-3 wt % K2TiF6 molten salts with less than 3 wt % KF, the interaction reaction was considered to proceed as Ti4++Ti=2Ti2+. If the bath contained more than 10 wt% KF, the reaction 3Ti4++Ti=4Ti3+ occurred.The electrochemical reduction of Ti4+ (K2TiF6) ions in the molten salts with less fluoride ions was observed to proceed according to three reaction steps, i.e. Ti4++e=Ti3+, Ti3++e=Ti2+, Ti2++2e=Ti. In the case of the fluoride ion concentration being higher, two reduction steps, i.e. Ti4++e=Ti3+, Ti3++3e=Ti were suggested.  相似文献   

4.
Adsorption of NO on oxidized WO3–ZrO2 catalysts leads to formation of adsorbed N2O, surface nitrates, NO+, and Zr4+(NO- 3)–NO species. When NO is adsorbed on a sample reduced at 523 K, W5+ –NO (1855 cm-1) and W4+(NO)2 (1785 and 1700 cm-1) species are formed in low concentration. Reduction at 573 K increases the density of W4+ sites and this density remains unchanged after reduction up to 673 K. The W4+(NO)2 species are stable towards evacuation and in the presence of oxygen; however, they quickly disappear in the simultaneous presence of NO and O2 as a result of the oxidation of the W4+ cations to W6+. The density of the W4+ sites on a Pt/WO3–ZrO2 sample is significant even after reduction at 523 K. This is explained by the promotion effect of platinum on the support reduction. The use of NO as a probe molecule for detection of reduced W n+ sites on tungstated zirconia is discussed.  相似文献   

5.
The data on the sizes of glass formation regions in the A IIO–B2O3 binary systems (where A II is a Group IIA or IIB element of the periodic table) and the possibility of calculating the glass-forming ability of simple oxides with the use of the Sun and Rawson criteria are analyzed. The disadvantages and limitations of these criteria are discussed. The modified Sun–Rawson criterion is described, and the glass-forming ability of melts in the A IIO–B2O3 systems is calculated according to this criterion. The possibility of forming glasses in the BaO–B2O3, SrO–B2O3, and CdO–B2O3 systems is predicted in the composition regions for which data on the glass formation are not available.  相似文献   

6.
The metal iodides reduce partially the host coordination polymer of the type $ ^{ 3}_{\infty } \left[ {\left( {{\text{Me}}_{ 3} {\text{Sn}}} \right)_{ 3} {\text{Fe}}\left( {\text{CN}} \right)_{ 6} } \right] $ , I, to give new host–guest supramolecular coordination polymers (SCP). The physical and chemical characteristics of the new products were studied by elemental analyses, X-ray powder diffraction, IR, UV/Vis, and solid state NMR spectra. The host–guest SCP are [Mx(Me3Sn)3Fe(1–x)IIIFe x II (CN)6]n M = Li+·2H2O, 1; Li+, 2; Na+, 3; K+, 4; Cu+, 5, [Li(Me3Sn)3FeII(CN)6]n, 6 and [(LiDEE)0.9(Me3Sn)3Fe o.1 III Fe o.9 II (CN)6]n, 7. The stoichiometry and nature of the guest depend on the type of the metal iodide and the reaction conditions. The polymeric nature of these SCP is due to the presence of trigonal bipyramidal configured structure which bridges between the single d-transition metal ions. The host–guest SCP containing the Li ions have been tested as electrodes to construct four different lithium-ion batteries.  相似文献   

7.
A solid solution of spinel (2/3)Li(Li1/3Ti5/3)O4–(1/3)Li(Ni1/2Ti3/2)O4 was prepared, and its structural/electrochemical properties were compared with Li(Li1/3Ti5/3)O4 to identify the effect of doping to the structural invariance of Li(Li1/3Ti5/3)O4. The solid solution retained the zero strain characteristic of Li(Li1/3Ti5/3)O4 during discharge/charge with an excellent cycle stability, while the rate capability was notably improved. However, a reversible broadening of the XRD peak was observed at the end of discharge, indicating some structural changes. XANES measurements showed that the oxidation state of Ti was +4 and that of Ni was +2 in the solid solution.  相似文献   

8.
In order to afford a possible way to avoid manganese dissolution during Li+ extraction/insertion of spinel-type LiMn2O4, the elution properties of HCl, (NH4)2S2O8, and Na2S2O8 were studied and the adsorption performance of Li+-extracted samples was characterized in Li+-containing solution. The results showed that Li+ was extracted by two different pathways: with manganese loss and without manganese loss. In the Li+ extraction process with manganese loss, ionic sieve was obtained after extracting Li+ from its precursor LiMn2O4, with accompanying partial transformation of Mn3+ to Mn4+ and Mn2+ by disproportionation reaction. This change caused the destruction of the framework and weight loss of ionic sieve due to the dissolution of Mn2+ in the solution. In the Li+ extraction process without manganese loss, Li+ was extracted with the reaction that part of Mn3+ was oxidized to Mn4+ by S2O82-. The Li+-extracted sample contained a small number of H+ which should exchange Li+ during this type of elution. The two Li+ extraction pathways also indicated that Li+ could not be completely eluted from the ionic sieve precursor. The uptake of Li+ on the ionic sieve was incomplete.  相似文献   

9.
Spectroscopic changes in highly concentrated vanadium(V)-sulfate solutions to be used in the vanadium redox battery are consistent with the presence of more than one V(V)-sulfate species. The results of Raman spectroscopy indicate that the major species in highly acidic conditions are VO2SO4 , VO2(SO4)2 3–, VO2(HSO4)2 , VO3 , V(V) dimers with V2O3 4+ and V2O4 2+ central units. The nature and amount of these species depends upon the V(V) and total sulfate concentrations as well as on S to V and H+ to V ratios in the positive half-cell electrolyte. V(V) forms V2O3 4+, VO2(SO4)2 3– and their copolymer species at higher total sulfate concentrations, which tends to stabilize the vanadium (V) positive electrolyte in the vanadium redox battery. The V(V) and V(IV) species show the least interaction with each other. Ageing of concentrated V(V) solutions at elevated temperature (50 °C) produces decomposition of species causing formation of V2O5 precipitates with a decrease in the amount of vanadium polymer.  相似文献   

10.
Mn4+ doped aluminate materials with efficient red emission are promising components for warmer white light-emitting diodes. However, it still remains as a challenge on increasing its luminous efficiency. For Mn4+ doped aluminate phosphors, co-dopants such as Li+, Mg2+, Na+, Si4+, or Ge4+ ions are often added to tailor the photoluminescence properties of phosphors during preparing process. However, the role of the ions is still in debate. In this work we took BaMgAl10O17:Mn (BMA:Mn) and α-Al2O3:Mn as examples to study the effects of Li+, Mg2+, Na+, and Si4+ on their luminescent properties. The energy levels induced by the co-dopants and some possible intrinsic defects of hosts (Al2O3) were calculated using the first-principles method. It is found that the Mg2+ and Na+ ions, compared with Li+ and Si4+, can prefer to form hole-type defects which enhance the valence stability of Mn4+ and thus enhance the emission intensity of the as-prepared phosphors.  相似文献   

11.
The temperature–concentration dependences of the electrical conductivity and the activation energy for electrical conduction of glasses in the Na2O–B2O3 and Na2O–2PbO · B2O3 systems are studied. The investigation into the nature of the electrical conduction in these glasses reveals that the contribution from the electronic component (10–3%) of the conductivity is within the sensitivity of the Liang–Wagner technique. A considerable alkali conductivity is observed upon introduction of more than 12 mol % Na2O. The true transport number of sodium Na is as large as unity at [Na2O] 15 mol %. It is shown that the observed temperature–concentration dependences of the electrical and transport properties are governed by the ratio between the concentrations of polar and nonpolar structural–chemical units of the Na+[BO4/2], Na+[OBO2/2] Na+[OBO2/2], Pb2+ 1/2[BO4/2], Pb2+ 1/2[OBO2/2], and [BO3/2] types.  相似文献   

12.
《Ceramics International》2017,43(2):1937-1942
A series of emission-tunable Ca3SiO4Cl2:Bi3+, Li+, Eun+(n =2, 3) (CSC:Bi3+, Li+, Eun+) phosphors have been synthesized via sol-gel method. The X-ray diffraction results indicate that the as-synthesized phosphors crystallize in a low temperature phase with the space group of P21/c. Energy transfer from Bi3+ to Eu3+/Eu2+ exists in CSC:Bi3+, Li+, Eun+ phosphors. Under the excitation of 327 or 365 nm, the Ca2.98−ySiO4Cl2:0.01Bi3+, 0.01Li+, yEun+(y=0.0001–0.002) phosphors show an intense green emission band around 505 nm, while under the excitation of 264 nm, three emission bands centered around 396 nm (Bi3+), 505 nm (Eu2+) and 614 nm (Eu3+) are observed and tunable colors from blue-violet to green or white are achieved in these phosphors by varying the content of Eu. White-light emission with the color coordinate (0.312, 0.328) is obtained in Ca2.978SiO4Cl2:0.01Bi3+, 0.01Li+, 0.002Eun+(n =2, 3). Based on these results, the as-prepared CSC:Bi3+, Li+, Eu2+, Eu3+ phosphors can act as color-tunable and single-phase white emission phosphors for potential applications in UV-excited white LEDs.  相似文献   

13.
Value for the activation energy, U act, and the entropy change, S, for the reaction 2Li + S2O 4 2– Li2S2O4+2e in acetonitrile have been found to be 72 kJ mol–11 and — 0.3 kJ mol–1 K–1, respectively, by a combination of impedance techniques and the use of a temperature-controlled environment on commercially manufactured cells which acted as constant volume containers.  相似文献   

14.
Carrier-assisted transport through liquid membranes is one of the important applications of supramolecular chemistry. This work investigates the use of synthetic carrier (ionophore) for the separation of metal ions. We have tested the effect of structure of ionophore on the separation of metal ions. For this purpose, we have used a new series of non-cyclic ionophores having different end groups and chain length (R1–R5). 1,5 bis (2-naphthyloxy)-3-oxapentane (R1), 1,8 bis (2-naphthyloxy)-3,6-di-oxaoctane (R2), 1,11 bis (2-naphthyloxy)-3,6,9-tri-oxaundecane (R3) 1,11-(dianthraquinonyloxy) 3,6,9-trioxaundecane (R4), 1,8 (dianthraquinonyloxy) 3, 6-dioxaoctane (R5) have been used in extraction, bulk liquid membrane (BLM) and supported liquid membrane (SLM) transport of alkali (Li+, Na+, K+) and alkaline earth metal cations (Ca2+, Mg2+). The supported liquid membrane consisted of a porous cellulose nitrate and and an onion membrane support impregnated with ionophore using chloroform as a solvent. The results reveal that ionophores R1, R2 and R3 are better extractants for K+ while R4 and R5 are better extractants for Ca2+. Among these ionophores R3 and R4 are best extractants for K+ and Ca2+ ions. The results of BLM reveal that ionophores R1, R2 and R3 transport Na+ at a greater extent, while R4 and R5 transport Ca2+ and K+ at a greater extent. In SLM experiments using a cellulose nitrate membrane support, it was observed that naphthyl end group bearing ionophores (R1–R3) transports Na+ > K+, and anthraquinone bearing ionophores (R4 and R5) transport K+ > Na+ > Ca2+ respectively. In the onion membrane support R4 transports Ca2+ and Na+ equally and R5 transports K+ selectively. On comparing the membrane support, the cellulose nitrate membrane is found better support for the transport of metal ions. The results suggest that due to the presence of different end groups and chain lengths the selectivity of non-cyclic ionophores towards metal ions is enhanced. Thus selectivity of ionophores may have fruitful application in ion selective electrodes and separation of metal ions.  相似文献   

15.
Five strong aqueous binary electrolytes — one symmetrical (CsCl) and four unsymmetrical (Li2SO4, K2SO4, Rb2SO4, Cs2SO4) — have been examined, for possible use as salt bridges for the minimization of liquid junction potentials (E L), up to the highest concentrations practicable, by the method of homoionic transference cells: Pt–Ir | Cl2 | CsCl (m 2) CsCl (m 1) | Cl2 | Pt–Ir and Hg | Hg2Cl2 | CsCl (m 2) CsCl (m 1) | Hg2Cl2 | Hg for CsCl, and Hg | Hg2SO4 | Me2SO4 (m 2) Me2SO4 (m 1) | Hg2SO4 | Hg for the Me2SO4 sulphates where Me=Li, K, Rb and Cs. CsCl, K2SO4, Rb2SO4, and Cs2SO4, prove to belong to the class obeying close equality of transference numbers for their ions, that is,t += |t |=0.5, over the whole concentration range (namely, from infinite dilution up to saturation). This result qualifies aqueous CsCl as an unrivalled salt bridge, whose equitransference is obeyed more stringently than any other salt. This is now demonstrated experimentally over the whole molality range, the saturation molality being as high as 11.30 mol kg–1 at 25°C. The observed propertyt +=|t |=0.5 excludes K2SO4, Rb2SO4, and Cs2SO4, as possible salt bridges because the equitransference conditions for minimization ofE L's are + = || = l/(z + + |z |) = 0.333, i.e.,t +=0.333 andt =2t +=0.667. Finally, Li2SO4, though behaving quite differently from the other three sulphates studied, does not sufficiently approach the required conditions, contrary to what one might have hoped from its known infinite-dilution transference numbers.  相似文献   

16.
《Ceramics International》2017,43(14):11244-11249
Sr3(PO4)2:Re3+, Li+ (Re = Eu, Sm) red phosphors were prepared via a high temperature solid state reaction, and their structure and luminescence properties were investigated. X-ray diffraction patterns indicate that the phase of as-prepared samples is in good agreement with standard Sr3(PO4)2 structure. Under 395 nm excitation, the emission of Sr3(PO4)2:Eu3+ consists of a strong peak centered at 622 nm and two weak peaks centered at 598 nm and 660 nm, which correspond to 5D07F2, 5D07F1 and 5D07F3 transitions, respectively. Also, the emission spectrum of Sr3(PO4)2:Sm3+ shows three main peaks at 568 nm, 603 nm and 651 nm, which are attributed to 4G5/26HI/2 (I = 5, 7, 9) transitions of Sm3+. Furthermore, luminescence properties of Sr3(PO4)2:Re3+, Li+ (Re = Eu, Sm) samples are enhanced significantly by Li+ ions doping as charge compensator. Results indicate that as-prepared Sr3(PO4)2:Re3+, Li+ (Re = Eu, Sm) could be the potential red phosphors used in white light-emitting diodes.  相似文献   

17.
The electrochemistry of molten LiOH–NaOH, LiOH–KOH, and NaOH–KOH was investigated using platinum, palladium, nickel, silver, aluminum and other electrodes. The fast kinetics of the Ag+/Ag electrode reaction suggests its use as a reference electrode in molten hydroxides. The key equilibrium reaction in each of these melts is 2 OH = H2O + O2– where H2O is the Lux-Flood acid (oxide ion acceptor) and O2– is the Lux–Flood base. This reaction dictates the minimum H2O content attainable in the melt. Extensive heating at 500 °C simply converts more of the alkali metal hydroxide into the corresponding oxide, that is, Li2O, Na2O or K2O. Thermodynamic calculations suggest that Li2O acts as a Lux–Flood acid in molten NaOH–KOH via the dissolution reaction Li2O(s) + 2 OH = 2 LiO + H2O whereas Na2O acts as a Lux–Flood base, Na2O(s) = 2 Na+ + O2–. The dominant limiting anodic reaction on platinum in all three melts is the oxidation of OH to yield oxygen, that is 2 OH 1/2 O2 + H2O + 2 e. The limiting cathodic reaction in these melts is the reduction of water in acidic melts ([H2O] [O2–]) and the reduction of Na+ or K+ in basic melts. The direct reduction of OH to hydrogen and O2– is thermodynamically impossible in molten hydroxides. The electrostability window for thermal battery applications in molten hydroxides at 250–300 °C is 1.5 V in acidic melts and 2.5 V in basic melts. The use of aluminum substrates could possibly extend this window to 3 V or higher. Preliminary tests of the Li–Fe (LAN) anode in molten LiOH–KOH and NaOH–KOH show that this anode is not stable in these melts at acidic conditions. The presence of superoxide ions in these acidic melts likely contributes to this instability of lithium anodes. Thermal battery development using molten hydroxides will likely require less active anode materials such as Li–Al alloys or the use of more basic melts. It is well established that sodium metal is both soluble and stable in basic NaOH–KOH melts and has been used as a reference electrode for this system.  相似文献   

18.
The title compound 1 with a formula of (Bu4N)42-P2W17O61{Me3N+(CH2)3Si}2O] · CH3CN was obtained in 77.1% (4.21 g scale) yield by a 1:2 molar-ratio reaction of the mono-lacunary Dawson polyoxometalate (POM) [P2W17O61]10− with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride ([Me3N(CH2)3Si(OMe)3]Cl) in mixed water/acetonitrile solution under acidic conditions and unequivocally characterized with complete elemental analysis, thermogravimetric and differential thermal analyses (TG/DTA), FTIR, solution (31P, 1H, 13C and 29Si) NMR and X-ray crystallography. Compound 1 contained two types of the ammonium cations, i.e., the counterions Bu4N+ (free cations) and the terminal quaternary ammonium ions (bound cations) which are connected to the POM through the organosilyl groups.  相似文献   

19.
This work reports on the preparation, structure, photochemical, and magnetic properties of six-layered Aurivillius bismuth ferrititanates, that is, Bi7Ti3Fe3O21, Bi7(Ti2Nb)Fe3O21+δ, and Bi7(Ti2Mg)Fe3O21−δ nanoparticles. The samples were prepared through the modified citrate complexation and precursor film process. The XRD Rietveld refinements were conducted to study the phase formations and crystal structure. The morphological and chemical component characteristics were investigated using SEM, TEM, and EDX analyses. Bi7Ti3Fe3O21, Bi7(Ti2Nb)Fe3O21+δ, and Bi7(Ti2Mg)Fe3O21−δ nanoparticles present an indirect allowed transitions with band energies of 2.04, 2.03, and 2.02 eV, respectively. The hybridized (O2p+Fet2g+Bi6s) formed the valence band (VB) and electronic components of (Ti–3d+Fe–eg) formed the conduction band (CB) of this six-layered Aurivillius bismuth ferrititanate. The three samples showed efficient photocatalytic degradation of Rhodamine B (RhB) dyes with the excitation wavelength λ > 420 nm. The optical absorption, photodegradation, and magnetic abilities were improved through microstructural modification on “B” site via partial substitution of Mg2+ and Nb5+ for Ti4+. The photocatalytic results were discussed based on the layer structure and multivalent Fe ions. Fe3+/2+ in the perovskite slabs (Bi5Fe3Ti3O19)2− could act as the catalytic mediators in the photocatalysis process. As a photocatalyst, Aurivillius Bi7(Ti2Mg)Fe3O21−δ nanoparticle is advantageous due to its photocatalytic and magnetically recoverable abilities.  相似文献   

20.
Gao  Xingtao  Wachs  Israel E. 《Topics in Catalysis》2002,18(3-4):243-250
Highly dispersed, multilayered surface metal oxide catalysts (V2O5/MO x /SiO2, M = Ti(IV), Zr(IV) or Al(III)) were successfully synthesized by taking into account various factors that govern the maximum dispersion of metal oxide species on silica. The characterization results revealed that the molecular structures of the surface vanadium oxide species on the modified supports are a strong function of environmental conditions. The surface vanadium oxide species under dehydrated conditions are predominantly isolated VO4 units, similar to the dehydrated V2O5/SiO2 catalysts. Upon hydration, the surface vanadium oxide species on the modified supports consist of polymerized VO5/VO6 units and/or less polymerized (VO3) n species, which depend on the vanadia content and the specific second metal oxide loading. The surface V cations are found to preferentially interact with the surface metal (Ti, Zr or Al) oxide species on silica. The V(V) cations in the dehydrated state appear to possess both oxygenated ligands of Si(IV)–O and M–O. Consequently, the reducibility and catalytic properties of the surface vanadium oxide species are significantly altered. The turnover frequencies of the surface VO4 species on these modified supports for methanol oxidation to redox products (predominantly formaldehyde) increase by more than an order of magnitude relative to the unmodified V2O5/SiO2 catalysts. These reactivity enhancements are associated with the substitution of Si(IV)–O oxygenated ligands by less electronegative M–O ligands in the O=V(–O–support)3 structure, which strongly suggests that the bridging V–O–support bonds play a key role in determining the reactivity of the surface vanadium oxide species on oxide supports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号