首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Design requirements for the advanced light water reactor (ALWR) have been developed so as to provide high assurance of containment integrity even in the event of a severe accident. The containment integrity requirements are in the form of two design criteria, and associated methodology, which address containment severe accident performance and offsite dose and are specified in the ALWR utility requirements document (URD), a set of detailed design requirements for next generation plants in the US.The containment performance criterion, which is the main focus of this paper, specifies that plant design characteristics and features shall be provided to preclude core damage sequences which could bypass containment and to withstand core damage sequence loads. This containment performance capability, along with the associated dose mitigation capability, provides a technical basis for emergency planning change since there would not be the same need for rapid offsite emergency response that is called for under the existing US emergency planning basis.  相似文献   

2.
The 3-D-field code, GASFLOW is a joint development of Forschungszentrum Karlsruhe and Los Alamos National Laboratory for the simulation of steam/hydrogen distribution and combustion in complex nuclear reactor containment geometries. GASFLOW gives a solution of the compressible 3-D Navier–Stokes equations and has been validated by analysing experiments that simulate the relevant aspects and integral sequences of such accidents. The 3-D GASFLOW simulations cover significant problem times and define a new state-of-the art in containment simulations that goes beyond the current simulation technique with lumped-parameter models. The newly released and validated version, GASFLOW 2.1 has been applied in mechanistic 3-D analyzes of steam/hydrogen distributions under severe accident conditions with mitigation involving a large number of catalytic recombiners at various locations in two types of PWR containments of German design. This contribution describes the developed 3-D containment models, the applied concept of recombiner positioning, and it discusses the calculated results in relation to the applied source term, which was the same in both containments. The investigated scenario was a hypothetical core melt accident beyond the design limit from a large-break loss of coolant accident (LOCA) at a low release location for steam and hydrogen from a rupture of the surge line to the pressurizer (surge-line LOCA). It covers the in-vessel phase only with 7000 s problem time. The contribution identifies the principal mechanisms that determine the hydrogen mixing in these two containments, and it shows generic differences to similar simulations performed with lumped-parameter codes that represent the containment by control volumes interconnected through 1-D flow paths. The analyzed mitigation concept with catalytic recombiners of the Siemens and NIS type is an effective measure to prevent the formation of burnable mixtures during the ongoing slow deinertization process after the hydrogen release and has recently been applied in backfitting the operational German Konvoi-type PWR plants with passive autocatalytic recombiners (PAR).  相似文献   

3.
Reliance on passive cooling has become an important objective in containment design. Several reactor concepts have been set forth, which are equipped with entirely passively cooled containments. However, the problems that have to be overcome in rejecting the entire heat generated by a severe accident in a high-rating reactor (i.e. one with a rating greater than 1200 MWe) have been found to be substantial and without obvious solutions. The GOTHIC code was verified and modified for containment cooling applications; optimal mesh sizes, computational time steps and applicable heat transfer correlations were examined. The effect of the break location on circulation patterns that develop inside the containment was also evaluated. The GOTHIC code was then employed to assess the effectiveness of several original heat rejection features that make it possible to cool high-rating containments. Two containment concepts were evaluated: one for a 1200 MWe new pressure tube light-water reactor, and one for a 1300 MWe pressurized-water reactor. The effectiveness of various containment configurations that include specific pressure-limiting features has been predicted. The best-performance configurations-worst-case-accident scenarios that were examined yielded peak pressures of less than 0.30 MPa for the 1200 MWe pressure tube light-water reactor, and less than 0.45 MPa for the 1300 MWe pressurized-water reactor.  相似文献   

4.
This paper summarizes the results of previous analyses of containment venting at US light water reactors. The focus of the paper is on the risk aspects of containment venting as a severe accident mitigation strategy; therefore, past risk analyses of venting are critically reviewed and conclusions are drawn where possible concerning the risk and efficacy of this strategy. Because the accident mitigation issues vary from one reactor and containment type to another, the paper examines five containment types separately.  相似文献   

5.
The paper describes tests to determine the leakage behavior of inflatable seals when subjected to containment pressures that exceed the design basis.2 Inflatable seals are used to prevent leakage around personnel and escape lock doors in about 10% of the commercial nuclear power plant containment structures in the United States. All of the installations are in either Pressurized Water Reactor (PWR) or Boiling Water Reactor (BWR) Mark-Ill type containments. This work is a part of an overall effort at Sandia National Laboratories to develop proven techniques for evaluating the performance of Light Water Reactor (LWR) containment buildings for beyond design basis loadings.Inflatable seals were tested at both room temperature and at elevated temperatures representative of postulated severe accident conditions. Parameters that were monitored and recorded during each test were the internal seal pressure and temperature, chamber (containment) pressure, leakage past the seals, and temperature of the test chamber and fixture to which the seals were attached. An empirically based, analytical method is presented to predict the containment pressure at which significant leakage past inflatable seals can be expected.  相似文献   

6.
New design and evaluation method for hydrogen management of containment atmosphere have been developed for application in the future boiling water reactor (BWR). These are intended as a part of consideration of severe accidents in the course of design so as to assure a high level of confidence that a large release of radioactivity to the environment that may result in unacceptable social consequences can reasonably be avoided. Emphasis on hydrogen management and protection against overpressure failure is based on the insights from probabilistic safety assessments (PSAs) that late phase overpressure (and associated leakage) and molten corium concrete reaction (MCCI) need attention to ensure that containment remains intact, in case energetic challenges to the containment such as DCH (direct containment heating) or FCI (fuel coolant interactions) are practically eliminated by design or resolved from risk standpoint of view. The authors studied the use of palladium-coated tantalum for hydrogen removal from containment atmosphere in order to avoid pressurization of the containment with small free volume by non-condensable gas and steam. Its effectiveness for ABWR (advanced boiling water reactor) containment was evaluated using laboratory test data. Although further experimental studies are necessary to confirm its effectiveness in real accident conditions, the design is a promising option and one that could be backfitted upon necessity to existing plants for which pressure retaining capability cannot be altered. Also new evaluation method for flammability control under severe accident conditions was developed. This method employes a realistic assessment of the amount of oxygen and hydrogen gases generated by radiolytic decomposition of water under severe accident conditions and their subsequent transport from water to containment atmosphere.  相似文献   

7.
Many existing containments in the United States have been shown to accommodate credible severe accident loads. Future containments should be explicitly designed for severe accident loads to reduce the uncertainty associated with the response of containments to these low-probability events. This paper examines the experiences from the application of current structural design codes for concrete containments, ultimate pressure capacity evaluation of existing containments, and pressure fragility testing of scale model concrete containments to arrive at the directions for modification of national codes. Recommendations are provided to consider the severe accidents directly in the concrete containment design.  相似文献   

8.
An analysis of hydrogen control systems corroborates containment inerting as the only way of preventing hydrogen explosions which may jeopardize the integrity of BWR Mark II containments during severe accidents. A severe Large Break LOCA and a severe Stuck Open Relief Valve Accident are simulated by the MARCH 2.0 code to compare the advantages and disadvantages of pre-inerting and post-inerting, with or without venting, in BWR Mark II containments.  相似文献   

9.
The paper presents two types of a passive safety containment for a near future BWR. They are named Mark S and Mark X containment. One of their common merits is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. The PCV pressure can be moderated within the design pressure. Another merit is the capability to submerge the PCV and the RPV above the core level. The third merit is robustness against external events such as a large commercial airplane crash. Both the containments have a passive cooling core catcher that has radial cooling channels. The Mark S containment is made of reinforced concrete and applicable to a large power BWR up to 1830 MWe. The Mark X containment has the steel secondary containment and can be cooled by natural circulation of outside air. It can accommodate a medium power BWR up to 1380 MWe. In both cases the plants have active and passive safety systems constituting in-depth hybrid safety (IDHS). The IDHS provides not only hardware diversity between active and passive safety systems but also more importantly diversity of the ultimate heat sinks between the atmosphere and the sea water. Although the plant concept discussed in the paper uses well-established technology, plant performance including economy is innovatively and evolutionally improved. Nothing is new in the hardware but everything is new in the performance.  相似文献   

10.
Containment venting is studied as a mitigation strategy for preventing or delaying severe fuel damage following hypothetical BWR Anticipated Transient Without Scram (ATWS) accidents initiated by MSIV-closure, and compounded by failure of the Standby Liquid Control (SLC) system injection of sodium pentaborate solution and by the failure of manually initiated control rod insertion. The venting of primary containment after reaching 75 psia (0.52 MPa) is found to result in the release of the vented steam inside the reactor building, and to result in inadequate Net Positive Suction Head (NPSH) for any system pumping from the pressure suppression pool. CONTAIN code calculations show that personnel access to large portions of the reactor building would be lost soon after the initiation of venting and that the temperatures reached would be likely to result in independent equipment failures. It is concluded that containment venting would be more likely to cause or to hasten the onset of severe fuel damage than to prevent or to delay it.Two alternative strategies that do not require containment venting, but that could delay or prevent severe fuel damage, are analyzed. BWR-LTAS code results are presented for a successful mitigation strategy in which the reactor vessel is depressurized, and for one in which the reactor vessel remains at pressure. For both cases the operators are assumed to take action to intentionally restrict injected flow such that fuel in the upper part of the core would be steam cooled. Resulting fuel temperatures are estimated with an off-line calculation and found to be acceptable.  相似文献   

11.
Sandia National Laboratories completed the testing of a 1:6-scale containment building for a light water reactor in July 1987. Results from this and other containment model testing are being used by the US Nuclear Regulatory Commission to benchmark analytical techniques. The validated techniques can then be used to predict the behavior of actual nuclear power plant containments to a variety of hypothesized severe accidents.The most recent containment building tested was made of reinforced concrete and had many of the features found in full-size containments. Testing consistent of a structural integrity test, and integrated leak rate test, and concluded with an overpressurization test of the structure. Highlights of the results from the overpressurization of the containment model are presented.  相似文献   

12.
In the US, concrete containment buildings for commercial nuclear power plants have steel liners that act as the internal pressure boundary. The liner abuts the concrete, acting as the interior concrete form. The liner is attached to the concrete by either studs or by a continuous structural shape (such as a T-section or channel) that is either continuously or intermittently welded to the liner. Studs are commonly used in reinforced concrete containments, while prestressed containments utilize a structural element as the anchorage. The practice in some countries follows the US practice, while in other countries the containment does not have a steel liner. In this latter case, there is a true double containment, and the annular region between the two containments is vented.This paper will review the practice of design of the liner system prior to the consideration of severe accident loads (overpressurization loads beyond the design conditions).An overpressurization test of a 1:6 scale reinforced concrete containment at Sandia National Laboratories resulted in a failure mechanism in the liner that was not fully anticipated. Post-test analyses and experiments have been conducted to understand the failure better. This work and the activities that followed the test are reviewed. Areas in which additional research should be conducted are given.  相似文献   

13.
Investigations into the performance of steel containment subject to pressure and temperature greater than their design basis loads are discussed. The timing, mechanism, and location of a containment failure, i.e., release of radioactive material, have an important impact on the consequences of a severe accident. We review the results of experiments on steel containment models pressurized to failure, on aged and unaged seals subjected to elevated temperature and pressure, and on electrical penetration assemblies tested for leakage. Based on the results, the important features and details of analytical methods that can be used to predict containment performance are identified. Finally, we speculate on the performance of steel containments in severe accident conditions.  相似文献   

14.
Station blackout is reported to be a sequence that would likely be a significant contributor to the accident risk at a boiling water reactor (BWR). The occurrence frequency of station blackout is evaluated in probabilistic safety assessment (PSA) to be 6×10?6 per reactor year at Limerick and less than 10?7 per reactor year at BWR in Japan.

This report describes an analytical study of thermal-hydraulic and radionuclide behavior during a postulated severe accident of station blackout at a reference BWR plant. The analytical approach was shown in both of hand calculation and the THALES/ART code calculation to better understand wide physical and chemical phenomena in the processes of severe accidents.

We evaluated timing of key events, core cooling and core temperature, reactor vessel failure, debris temperature, containment pressure, and release and deposition of radionuclide in the containment. The THALES and CORCON models on the chemical reactions in the core-concrete interaction lead to great differences in the increasing rate of containment pressure and the release rate of fission products from the core debris.  相似文献   

15.
依据先进非能动压水堆的严重事故管理导则(SAMG),消防系统中的防火喷淋系统,尽管属于非安全相关的系统,仍可以作为严重事故缓解策略,在以下三个方面起到严重事故缓解的作用:减少放射性气溶胶的质量;安全壳降温降压;安全壳注水。因此本文利用一体化严重事故分析程序,选取典型事故序列,评估防火喷淋系统在严重事故中的三种缓解作用的有效性为防火喷淋在严重事故管理导则中的应用提供技术支持。分析结果表明,防火喷淋系统能够实现堆腔淹没,在一定时间内进行安全壳降压,以及减少安全壳中放射性气溶胶的含量的作用,但由于系统限制,防火喷淋进行堆腔淹没的流量不能满足安全限值,并且只能推迟而不能够避免安全壳的失效。防火喷淋系统对严重事故的缓解作用虽然是有限的,但可为其他相关系统或设备的修复提供一定时间。  相似文献   

16.
The CONGA project concentrated on theoretical and experimental studies investigating the behaviour of advanced light water reactor containments containing passive containment heat removal systems and catalytic recombiners expected to be effectively operational during a hypothetical severe accident involving large quantities of aerosol particles and noncondensable gases. The central point of interest was the investigation of the effect of aerosol deposition on the condensation heat transfer of specially designed finned-type heat exchangers (HX) as well as the recombination efficiency of catalytic recombiners. A conceptual double-wall Italian PWR design and a SWR1000 design from Siemens were considered specifically as the reference Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) designs. An assessment of selected accident scenarios was performed in order to define the range of boundary conditions necessary to perform the experimental studies of the other work packages. Experimental investigations indicated that aerosol deposition accounted for up to 37% loss in the heat removal capacity of the two-tube-layer BWR HX units. However, no significant heat transfer degradation could be observed for the PWR HX units. These results can be attributed to the important differences in the designs and operating conditions of the two units. The tests to study the effect of hydrogen (simulated by helium) on the heat transfer rate for heat exchanger units designed for BWR and PWR applications indicated a degradation less than 30% under various conditions. This was found to be acceptable within the over capacity designed for the heat exchangers or containment characteristics. The tests performed to study the long-term aerosol behaviour in the pressure suppression chamber of the current operating BWRs indicated that the water pool scrubs the aerosol particles effectively and reduces the ultimate aerosol load expected on the off-gas system. The efficiency of the catalytic recombiner system designed by Siemens for the off-gas system was found to be insensitive to the aerosol deposited in the recombiner. A computation code, HTCFOUL, was developed to predict the heat transfer rate of a finned-type heat exchanger subjected to a steam–noncondensable gas mixture containing airborne aerosol particles. The model predicts the non-aerosol part of two tests within a variation of 26% and the aerosol part within 32%.  相似文献   

17.
AP1000小破口叠加重力注射失效严重事故分析   总被引:1,自引:1,他引:0  
应用新版MELCOR程序,建立了AP1000一二回路、非能动安全系统及安全壳隔室的热工水力模型,并以热段小破口叠加重力注射系统失效事故为例,对该严重事故进程在压力容器内阶段进行模拟计算,对缓解措施的功能进行了分析和评价。结果表明:自动卸压系统(ADS1~4)的成功实施,可使来自堆芯补水箱和安注箱的冷却水快速有效地注入堆芯,在冷却水完全耗尽前,堆芯始终处于淹没的状态。ADS4爆破阀开启后,使回路压力快速与安全壳压力平衡;非能动安全壳冷却系统对抵御严重事故下由于衰变热和非冷凝气体带来的缓慢升温升压是行之有效的措施;点火器在氢气浓度较低时点火,缓解了安全壳大空间发生全局燃爆而引发安全壳超压失效的风险,但连续点火燃烧会引起局部隔室温升远超出设计温度而危及后备缓解设施的存活。  相似文献   

18.
Hydrogen source term and hydrogen mitigation under severe accidents is evaluated for most nuclear power plants (NPPs) after Fukushima Daiichi accident. Two units of Pressurized Heavy Water Reactor (PHWR) are under operating in China, and hydrogen risk control should be evaluated in detail for the existing design. The distinguish feature of PHWR, compared with PWR, is the horizontal reactor core surrounded by moderator in calandria vessel (CV), which may influence the hydrogen source term. Based on integral system analysis code of PHWR, the plant model including primary heat transfer system (PHTS), calandria, end shield system, reactor cavity and containment has been developed. Two severe accident sequences have been selected to study hydrogen generation characteristic and the effectiveness of hydrogen mitigation with igniters. The one is Station Blackout (SBO) which represents high-pressure core melt accident, and the other is Large Break Loss of Coolant Accident (LLOCA) at reactor outlet header (ROH) which represents low-pressure core melt accident. Results show that under severe accident sequences, core oxidation of zirconium–steam reaction will produce hydrogen with deterioration of core cooling and the water in CV and reactor cavity can inhibits hydrogen generation for a relatively long time. However, as the water dries out, creep failure happens on CV. As a result, molten core falls into cavity and molten core concrete interaction (MCCI) occurs, releasing a large mass of hydrogen. When hydrogen igniters fail, volume fraction of hydrogen in the containment is more than 15% while equivalent amount of hydrogen generate from a 100% fuel clad-coolant reaction. As a result, hydrogen risk lies in the deflagration–detonation transition area. When igniters start at the beginning of large hydrogen generation, hydrogen mixtures ignite at low concentration in the compartments and the combustion mode locates at the edge of flammable area. However, the power supply to igniters should be ensured.  相似文献   

19.
The fire spray system (FSS) of the Advanced Passive PWR, as a part of the fire protection system, can provide a non-safety related containment spraying function for severe accident mitigation which is included in the Severe Accident Management Guidelines (SAMG) of the Advanced Passive PWR when dealing with severe accidents. The effectiveness of the FSS is investigated on three effects for severe accident mitigation which are controlling the containment condition, washing out fission product and injecting into the containment through three representative severe accident scenarios analysis with integral accident analysis code since there is no sufficient data support, besides the negative impact is also discussed. Results show that the FSS can be effective for controlling the containment condition, washing out fission product and injecting into the containment, however the effect is limited due to system limitation: the FSS can only cool the containment atmosphere for a short term; the flow rate of FSS cannot fulfill the success criteria given in the PRA report of the Advanced Passive PWR. Meanwhile, the hydrogen concentration and the containment water level should be the long-term monitored because actuating the FSS may cause hydrogen risk in the containment and containment flooding. Despite its limitation and negative impact, the FSS can be effective as an alternative severe accident mitigation measurement for postponing the process of accidents for safety system recovery.  相似文献   

20.
This paper shows a basic concept of a near future boiling water reactor (BWR) aiming at evolutional safety and cost savings with minimum change from the current advanced BWR (ABWR). The plant output is uprated to 1500 MWe from 1356 MWe. This power uprate can bring about potential of 11% cost saving per MWe base. Safety improvement as a next generation large reactor is also achieved.

The advanced reinforced concrete containment vessel (ARCCV) is used for the containment vessel to improve safety for severe accidents. The peak pressure of the containment at severe accidents can be kept close to the design pressure. The advanced passive containment cooling system (APCS) is also provided and can accomplish no primary containment vessel (PCV) venting.

The advanced emergency core cooling system (AECCS) consists of four divisions in the front line. The advanced passive cooling system (APCS) is also provided. The combination of the four divisional emergency core cooling system (ECCS) and the passive safety system improves the plant performance in probabilistic safety assessment (PSA).

This plant concept is designed based on the heritage of the current ABWR. No more major research and development (R&D) are necessary. Therefore, construction and operation is possible in the early 2010s.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号