首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aligned Zn2GeO4 coated ZnO nanorods and Ge doped ZnO nanocombs were synthesized on a silicon substrate by a simple thermal evaporation method. The structure and morphology of the as-synthesized nanostructure were characterized using scanning electron microscopy and transmission electron microscopy. The growth of aligned Zn2GeO4 coated ZnO nanorods and Ge doped ZnO nanocombs follows a vapor-solid (VS) process. Photoluminescence properties were also investigated at room temperature. The photoluminescence spectrum reveals the nanostructures have a sharp ultraviolet luminescence peak centered at 382 nm and a broad green luminescence peak centered at about 494 nm.  相似文献   

2.
This review provides a background on the structure and properties of ZnO nanostructures. ZnO nanostructures are advantageous for many applications in sensing, photocatalysis, functional textiles, and cosmetic industries, which are described in this review. Previous work using UV Visible (UV–vis) spectroscopy and scanning electron microscopy (SEM) for ZnO nanorod growth analysis in-solution and on a substrate for determination of optical properties and morphology is discussed, as well as their results in determining the kinetics and growth mechanisms. From this literature review, it is understood that the synthesis process greatly affects nanostructures and properties; and hence, their applications. In addition, in this review, the mechanism of ZnO nanostructure growth is unveiled, and it is shown that by having greater control over their morphology and size through such mechanistic understanding, the above-mentioned applications can be affected. The contradictions and gaps in knowledge are summarized in order to highlight the variations in results, followed by suggestions for how to answer these gaps and future outlooks for ZnO nanostructure research.  相似文献   

3.
以Zn(AC)2.2H2O为原料,NH3.H2O为络合剂,在NaBH4辅助下140℃水热反应2 h制备出ZnO纳米棒自组装的海胆形结构。采用X射线衍射仪、扫描电镜和透射电镜对产物进行表征。结果表明,海胆形ZnO结构的直径约为3~17μm,它是由直径约为100 nm,长度约为500 nm~3μm范围的ZnO纳米棒自组装而成。提出了ZnO纳米棒自组装海胆形结构的可能生长机理。NaBH4与溶液中的少量H+结合生成H2气泡,ZnO纳米晶吸附在H2的气液界面形成了纳米颗粒自组装的微球,随着反应时间的延长,组装成微球的ZnO纳米颗粒沿[0001]方向取向生长成ZnO纳米棒,最终形成ZnO纳米棒自组装的海胆形颗粒。室温下以海胆形ZnO纳米结构和ZnO纳米棒为光催化剂,以偶氮染料甲基橙作为光催化研究对象,紫外光照70 min,对甲基橙的降解率分别为97%和67%。  相似文献   

4.
In the present study we have synthesized flower-like ZnO nanostructures comprising of nanobelts of 20 nm width by template and surfactant free low-temperature (4 °C) aqueous solution route. The ZnO nanostructures exhibit flower-like morphology, having crystalline hexagonal wurtzite structure with (0 0 1) orientation. The flowers with size between 600 and 700 nm consist of ZnO units having crystallite size of ∼40 nm. Chemical and structural characterization reveals a significant role of precursor:ligand molar ratio, pH, and temperature in the formation of single-step flower-like ZnO at low temperature. Plausible growth mechanism for the formation of flower-like structure has been discussed in detail. Photoluminescence studies confirm formation of ZnO with the defects in crystal structure. The flower-like ZnO nanostructures exhibit enhanced photochemical degradation of methylene blue (MB) with the increased concentration of ligand, indicating attribution of structural features in the photocatalytic properties.  相似文献   

5.
魏贵明 《化工新型材料》2012,40(5):102-103,109
以硝酸锌和硝酸钕为反应原料,利用共沉淀的方法制备稀土元素钕掺杂氧化锌(ZnO)纳米材料。利用X射线衍射仪(XRD)、红外光谱仪(IR)、差热-热失重(TG-DSC)及荧光光谱仪(PL)对钕掺杂氧化锌纳米材料的晶体结构、热稳定性及发光性能进行了表征。结果表明:钕掺杂改善了氧化锌的光学性能,800℃高温处理的钕掺杂量为7%的氧化锌具有较好的发光性能。  相似文献   

6.
采用静电纺丝法制备了多级中空结构的SnO2纳米纤维, 然后将SnO2纳米纤维置于90℃乙酸锌溶液中, 恒温水浴条件下, 在SnO2纳米纤维上生长了ZnO纳米球, 形成了异质结构的SnO2/ZnO复合纳米纤维。分别通过XRD、SEM、EDX和XPS等表征手段对异质复合纳米纤维SnO2/ZnO材料的结构、形貌及元素含量进行了表征分析。异质结构的SnO2/ZnO复合纳米纤维保持了SnO2纳米纤维多级中空的纤维结构, SnO2纳米纤维长度约为300 nm, 依附于SnO2纤维表面的SnO2纳米颗粒生长的ZnO纳米球直径为250~300 nm。采用静态气体测试系统对异质复合纳米纤维SnO2/ZnO气敏元件的气敏性能进行了测试。测试结果表明: 异质复合纳米纤维SnO2/ZnO气敏元件在最佳工作温度350℃下, 对(0.5~100)×10-6丙酮具有优异的响应灵敏度、较好的选择性和长期稳定性。异质复合纳米纤维SnO2/ZnO中存在于ZnO纳米球与SnO2纳米颗粒间的N-N同型异质结导致复合材料晶界势垒高度的降低, 改善了电子与空穴的输运特性, 促使SnO2/ZnO异质复合纳米纤维的吸附能力大大增强, 从而改善了SnO2/ZnO元件的丙酮敏感特性。  相似文献   

7.
Uniform ZnO nanorods were synthesized in high-yield by using metal zinc powder as zinc source via a one-step facile hydrothermal process under mild conditions, in which cetyltrimethylammonium bromide (CTAB) with ordered chain structures acted as the conversion of Zn powder into ZnO nanorods. The characterization results show that the as-synthesized products were structurally uniform and have diameters of 40–80 nm. Gas sensing properties studies show that ZnO nanorods exhibit more excellent response and stability to ethanol than that of ZnO nanoparticles. After working continuously for 50 days, the sensitivity of ZnO nanorods still retained 7.3, whereas, the ZnO nanoparticles showed only 1.0. The facile preparation method and the improved properties derived from typical rods-like nanostructure are significant for the future applications of gas sensing material.  相似文献   

8.
Star-like ZnO nanostructures were synthesized in bulk quantity by thermal evaporation method. The morphologies and structure of ZnO nanostructures were investigated by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results demonstrated that the as-synthesized products consisted of star-like ZnO nanostructure with hexagonal wurtzite phase. The legs of the star-like nanostructures were preferentially grown up along the [0001] direction. A vapor-solid (VS) growth mechanism was proposed to explain the formation of the star-like structures. Photoluminescence spectrum exhibited a narrow ultraviolet emission at around 380 nm and a broad green emission around 491 nm. Raman spectrum of the ZnO nanostructures was also discussed.  相似文献   

9.
Zhang J  Liu X  Wang L  Yang T  Guo X  Wu S  Wang S  Zhang S 《Nanotechnology》2011,22(18):185501
α-Fe(2)O(3)@ZnO core-shell nanospindles were synthesized via a two-step hydrothermal approach, and characterized by means of SEM/TEM/XRD/XPS. The ZnO shell coated on the nanospindles has a thickness of 10-15 nm. Considering that both α-Fe(2)O(3) and ZnO are good sensing materials, we have investigated the gas sensing performances of the core-shell nanocomposite using ethanol as the main probe gas. It is interesting to find that the gas sensor properties of the core-shell nanospindles are significantly enhanced compared with pristine α-Fe(2)O(3). The enhanced sensor properties are attributed to the unique core-shell nanostructure. The detailed sensing mechanism is discussed with respect to the energy band structure and the electron depletion theory. The core-shell nanostructure reported in this work provides a new path to fabricate highly sensitive materials for gas sensing applications.  相似文献   

10.
纳米ZnO的许多优异性能使其成为人们研究的热点并得到广泛应用.ZnO是一种同时具有半导体和压电双重特性的材料.运用不同的工艺,目前已生长出纳米线(棒)、纳米带、纳米环、四角形纳米结构、纳米笼、纳米螺旋等多种特殊形态的纳米ZnO.由这些许多独特的形态,可以看出纳米ZnO是纳米材料家族中可以生长出的结构最多样的成员之一.这些纳米结构在光电、传导、传感以及生化等不同领域有很多潜在的新颖的应用前景.  相似文献   

11.
Zinc oxide nanostructures: synthesis and properties   总被引:3,自引:0,他引:3  
This article provides a comprehensive review of the current research activities that focus on the ZnO nanostructure materials and their physical property characterizations. It begins with the synthetic methods that have been exploited to grow ZnO nanostructures. A range of remarkable characteristics are then presented, organized into sections describing the mechanical, electrical, optical, magnetic, and chemical sensing properties. These studies constitute the basis for developing versatile applications of ZnO nanostructures.  相似文献   

12.
以醋酸锌和氨水为原料,超声法制备出氧化锌中空柱,采用扫描电镜(SEM)、X射线衍射(XRD)、Uv-vis漫反射对纳米ZnO的形貌、结构进行了表征,以有机染料亚甲基蓝溶液为光催化反应模型降解物,考察纳米ZnO的光催化性能。结果表明:制备出的纳米氧化锌呈中空的柱形,长约2~3μm,直径约300nm,壁厚约40nm,结晶良好。当加入纳米ZnO为0.4g/L,光降解时间为75min,对亚甲基蓝溶液的降解率可达到99.08%。  相似文献   

13.
The present work reports study on antimicrobial activity of pure and doped ZnO nanocomposites. Polyvinyl pyrrolidone capped Mn- and Fe-doped ZnO nanocomposites were synthesised using simple chemical co-precipitation technique. The synthesised materials were characterised using transmission electron microscope (TEM), X-ray powder diffraction (XRD), energy dispersive X-ray fluorescence (EDXRF), Fourier transform infrared (FTIR) spectroscopy and ultraviolet (UV) visible spectroscopy. The XRD and TEM studies reveal that the synthesised ZnO nanocrystals have a hexagonal wurtzite structure with average crystalline size ~7–14 nm. EDXRF and FTIR study confirmed the doping and the incorporation of impurity in ZnO nanostructure. The antimicrobial activities of nanoparticles (NPs) were studied against fungi, gram-positive and gram-negative bacteria using the standard disc diffusion method. The photocatalytic activities of prepared NPs were evaluated by degradation of methylene blue dye in aqueous solution under UV light irradiation. Experimental results demonstrated that ZnO NPs doped with 10% of Mn and Fe ions showed maximum antimicrobial and photodegradation efficiency in contrast with that of the 1% loading. The enhancement in antimicrobial effect and photocatalytic degradation is attributed to the generation of reactive oxygen species due to the synergistic effects of Mn and Fe loading.  相似文献   

14.
Without the use of a metal catalyst in the process, ZnO with nanostructures was successfully prepared on Si (100) substrate by simple chemical vapor-deposition method. In our work, Ar was used as the plasma forming gas, O2 was the reactive gas and metal zinc powder (99.99% purity) vaporized by cylinder hollow-cathode discharge (HCD) acted as the zinc source. The crystal structures of the as-synthesized ZnO nanostructures were characterized by X-ray diffraction (XRD); the ZnO sample growing on the wall of the crucible showed a ‘comb-like’ nanostructure, while the other one at the bottom of the crucible showed a ‘rod-like’ structure, which can be attributed to the difference of the oxygen content. The measurement on the photoluminescence (PL) performance of the ZnO nanostructures was carried out at room temperature. The results indicated that the ‘comb-shape’ ZnO nanomaterial possessed a remarkably strong ultraviolet emission peak centered at 388 nm, while ZnO nanorods, except better ultraviolet emission, also had relatively strong blue-green emission ranging from 470 to 600 nm due to the existence of oxygen vacancies. The growth mechanism of ZnO with nanostructures is also discussed in this paper.  相似文献   

15.
通过溶剂热法(无水乙醇)制备了Cu2+(0~6mol%)掺杂ZnO纳米棒粉体,采用X射线衍射仪和扫描电镜对掺杂ZnO纳米粉体的晶体结构和微观形貌进行了表征.研究了Cu2+掺杂比例、溶剂热反应温度及时间对材料气敏性能的影响;考察ZnO(120℃,10h)和3mol%Cu2+掺杂ZnO(120℃,10h)粉体对应元件对甲醛、乙酸、甲苯、乙醇、丙酮、三甲胺等六种气体的气敏性能.结果表明:通过溶剂热法制备的ZnO粉体为纳米棒状结构,棒长度和直径随Cu2+掺杂比例不同发生变化;3mol%Cu2+掺杂ZnO(120℃,10h)样品对应元件对低浓度乙醇有很好的选择性,在395℃工作温度下对1×10–3乙醇的灵敏度为380.5,响应和脱附时间分别为5 s和40 s,对1×10–6乙醇的灵敏度可达4.2.  相似文献   

16.
Zinc oxide (ZnO) comb-like nanostructures were successfully synthesized on the silicon substrate without a catalyst via chemical vapour deposition. The morphology and crystal structure of the product were characterized by scanning electron microscope and X-ray diffractometer. In this research, a simple gas sensor was fabricated based on the principle of change in resistivity due to oxygen vacancies, which makes its surface chemically and electrically active. The fabricated ZnO nanostructures proved to be quite sensitive to low concentration of \(\hbox {H}_{2}\hbox {S}\) gas at room temperature. The sensitivity and response time were measured as a function of gas concentrations. Small response time (48–22 s) and long recovery time (540 s) were found at \(\hbox {H}_{2}\hbox {S}\) gas concentrations of 0.1–4 ppm, respectively. ZnO comb-like structures are considered as the most suitable materials for gas sensor fabrication due to their high sensing properties. These nanostructures growth and \(\hbox {H}_{2}\hbox {S}\) gas sensing mechanism were also discussed.  相似文献   

17.
Chengchao Li 《Thin solid films》2009,517(20):5931-1421
ZnO nanoneedles were synthesized through a simple wet chemical route at room temperature. The diameters of the ZnO nanoneedles tips and roots are about 5 nm and 10 nm, respectively. The sensors fabricated by ZnO nanoneedles exhibited good sensing properties. The sensitivity is 173 against 100 ppm ethanol and the working temperature can be lowered to 150 °C. Additionally, a linear dependence of the sensitivity on the ethanol concentration was also observed. These excellent sensing properties can be ascribed to the small size effects, which can be further confirmed by the calculated results.  相似文献   

18.
Well crystalline Co-Bi co-doped ZnO nanostructures with various concentration of Bi were synthesized by simple chemical precipitation technique using metal nitrate precursors. The structural and magnetic properties of the samples calcined at 300 °C for 6 h has been studied comprehensively. X-ray diffraction patterns of the pure and Co-with Bi doped samples have shown the well crystalline diffraction peaks corresponds to the characteristic wurtzite ZnO crystal structure. Aggregated nano particles have emerged with flower like morphology and it can be seen from the scanning electron microscopy and transmission electron microscopy. The average particle diameter was estimated and found to be 25–35 nm. Tunable optical band gap related to an additional electron state created by dopant was observed from the UV–Visible spectra. Typical PL emission in the UV, visible and continuous deep level emission further demonstrates that the potential application of the material in optoelectronics. Excellent ferromagnetic features of the material at room temperature reveal the additional carrier induced exchange interaction could enhance the ferromagnetism in co-doped ZnO nanostructure. The addition of Bi at 3+ states can act as donor within the semiconductor which provides the additional electron charge carrier that could involve directly to the exchange interaction effectively at certain limit and enhances the ferromagnetism. At higher doping concentration the formation of diamagnetic Bi2O3 secondary phase have contributed to change the ferromagnetic behaviour of the sample. From this study it is suggested that this kind of combined ferromagnetism and excellent optical tunability of the Bi co-doped ZnO:Co system will be the potential material for future magneto-opto-electronic devices.  相似文献   

19.
The structural, optical and electrical properties of undoped and rare-earth (Er, Yb) doped zinc oxide (ZnO) nanopowder samples synthesized by hydrothermal method were investigated. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy. The optical properties of undoped and rare-earth (Er, Yb) doped ZnO were carried out with UV–visible diffuse reflectance spectroscopy techniques. XRD results reveal that Yb and Er doped ZnO nanopowders have single phase hexagonal (Wurtzite) structure without any impurities. SEM analysis indicate that dopants with different radii affected the surface morphology of ZnO nanostructures. The optical band gap of all samples were calculated from UV–Vis diffuse reflectance spectroscopy data. We have obtained band gap values of undoped, Er and Yb doped ZnO as 3.24, 3.23, 3.22 eV, respectively. Electrical characterization of the samples were made in the 280–350 K temperature range using Van der Pauw method based on Hall effect measurement. The carrier concentrations decreased for both Er and Yb doping while the Hall mobility and electrical resistivity increased with Yb, Er doping compared to undoped ZnO nanopowder at room temperature. The temperature dependent resistivity measurements of Er doped ZnO showed a metal–semiconductor transition at about 295 K, while Yb doped ZnO showed characteristic semiconductor behavior.  相似文献   

20.
A singularity flower-like ZnO nanostructure was prepared on a large scale through a very simple solution method at room temperature and under ambient pressure in a very short time. The flower-like ZnO nanostructures were self-assembled by thin and uniform nanosheets, with a thickness of around 5 nm. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were used to characterize the structure and morphology. The possible growth mechanism was discussed based on the reaction process. The blue shift in the UV-vis spectra of the ZnO nanostructures was also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号