首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
黄雪莉  刘娜 《煤炭转化》2012,35(3):23-27
基于Aspen Plus流程模拟软件,运用Gibbs自由能最小化方法建立了Shell粉煤气化模拟计算模型,对新疆准东一采区的煤种进行气化过程模拟优化.以(CO+H2)摩尔分数最高为目标函数,通过单因素研究确立的最佳操作条件为:气化压力2MPa,氧煤比0.73kg/kg和蒸汽煤比0.09kg/kg;而通过虚拟正交实验研究,获得的最佳操作条件为:气化压力2MPa,氧煤比0.78kg/kg和蒸汽煤比0.05kg/kg.各因素对气化过程影响大小顺序为:氧煤比和水煤比的交互作用>氧煤比>水煤比>气化压力.  相似文献   

2.
借助Aspen Plus模拟软件,对粉煤加压气流床气化工艺进行研究。采用工业数据,对计算模型进行验证,发现计算结果与实际生产运行数据基本吻合,有效合成气最大相对误差不大于3%。研究表明,氧煤比和蒸汽煤比对气化性能的影响较大,随着蒸汽煤比的增加,有效气成分降低;随着氧煤比的增加,有效气含量存在最大值,同时冷煤气效率也存在最佳值。此外,气化温度随氧煤比的增加而增加,随蒸汽煤比的增加而降低。  相似文献   

3.
原满  刘亮  田红  朱超 《广东化工》2012,(12):123-125
文章以过程模拟软件Aspen Plus为工具,建立了以高温空气为气化剂的固定床煤气化的数学模型,模拟计算了逆流式固定床气化的制气过程;并利用该模型模拟研究了不同空煤比以及不同的空气预热温度对煤气化指标的影响,结果表明:在相同空煤比与汽煤比的工况下,提高空气的预热温度可以使气化过程得到强化。  相似文献   

4.
基于Aspen Plus软件的煤气化过程模拟评述   总被引:1,自引:0,他引:1  
煤气化技术是实现煤清洁利用的有效途径,是煤炭转化的关键技术。通过利用Aspen Plus过程模拟软件建立气化炉模型,可以低成本、低风险、高效率的研究评估气化炉的气化性能和考察各项操作条件对气化产物的影响,寻找最佳操作点。总结了国内外科研机构已报道的各型基于Aspen Plus软件开发的气流床气化炉模型,分析了各种气化炉模型的区别与联系,并根据实践经验提出了煤气化过程模拟的发展方向。  相似文献   

5.
Aspen Plus是一种基于稳态化工模拟、优化、灵敏度分析和经济评价的大型化工流程模拟软件,由于其优良的性能而被广泛应用于化工领域。文章主要介绍了Aspen Plus软件的特点,并且综述了近几年来Aspen Plus在煤气化领域中的研究成果和发展概况。  相似文献   

6.
利用Aspen Plus模拟了甲醇合成过程,并分析了循环比对粗甲醇产量、碳转化率、粗甲醇含量及循环气压缩机功耗的影响。结果表明:粗甲醇中甲醇含量为93.32mol%,反应器1出口物料中H2、CO、CO2、甲醇含量分别为73.46mol%、4.47mol%、2.63mol%、13.80mol%,反应器2出口物料中H2、CO、CO2、甲醇含量分别为71.93mol%、2.35mol%、2.58mol%、17.03mol%;循环比由1.06增加到2.26,粗甲醇产量由2430kmol/h提高到2505kmol/h,碳转化率由96.02%提高到98.25%,粗甲醇含量由93.5mol%降低至92.8mol%,循环气压缩机功耗由899kW增加到1788kW。  相似文献   

7.
苯回收塔工艺过程模拟   总被引:2,自引:0,他引:2  
利用AspenPlus软件,选取BK10模型,对苯回收塔进料状态改变以后的运行状况进行了模拟计算。结果表明:进料位置在设计的17块塔板时,顶产出量应在9520—9620kg/h之间变化,回流比在0.69以上即可达到要求的分离精度。进料位置调整为23块板时,塔顶产出量应在9540.9620kg/h之间变化,回流比在0.61以上可以达到要求的分离精度。稳定控制塔顶产出量,可以有效提高分离精度。改变进料位置、优化操作参数可有效降低装置能耗。  相似文献   

8.
煤气化工艺过程模拟研究   总被引:1,自引:0,他引:1  
应用Aspen Plus过程模拟软件,对3种高灰熔点煤进行shell气化炉和GSP气化炉气化过程模拟研究。结果表明:对同一矿区煤样,与精煤相比,加入助熔剂后,产气率有所下降,但有效气体中的CO H2并没有减少。另外,由于加入助熔剂,使得入炉煤灰熔点降低,操作温度降低,从而氧耗降低,有利于节约能源。配煤使产气率大大降低,合成气的有效成分含量减少。  相似文献   

9.
采用Aspen Plus软件对我国准东煤合成气生产系统进行模拟,研究气化炉的主要操作参数(即n(O)∶咒(C)和气化剂中水蒸气比例)对气化结果(合成气温度、合成气产出率、冷煤气效率和(火用)效率)的影响;比较了相同气化条件下准东煤与烟煤经济性的差异;对粗合成气显热回收对经济性的影响进行了讨论.结果表明,准东煤的气化经济性比烟煤的高,而综合效率却相反;当气化剂中水蒸气含量高时,加热气化剂回收显热比激冷回收要好.  相似文献   

10.
张晓 《天津化工》2014,(3):24-26
本文对现有甲烷合成技术进行综述性评价的基础上,分析、比较工艺流程、技术特点,介绍了甲烷合成工艺流程进行流程模拟计算的思路及控制方案。并根据计算结果分析了不同甲烷合成技术和煤气化工艺对甲烷合成的影响。  相似文献   

11.
基于Aspen Plus软件,应用Gibbs自由能最小化方法,建立数学模型,对干煤粉气流床气化制工业燃气过程进行数值模拟。模拟计算结果表明,此模型可以比较准确地预测干煤粉气流床气化炉的出口气体成分。基于此模型,分别考察了氧煤比、蒸汽煤比对气化温度和有效气产量的影响,并确定出神华煤种合理的氧煤比为0.8和蒸汽煤比为0.1。  相似文献   

12.
以Aspen Plus软件为模拟工具,选择反应平衡模型,应用Gibbs自由能最小化方法建立干煤粉气化炉模型并进行模拟研究。模拟分析了气化炉的主要参数(压力、氧煤比和蒸汽煤比)对气化结果的影响,结果表明:压力增加可使甲烷含量增加,蒸汽煤比、氧煤比是影响粗煤气出口温度和组成的主要因素。  相似文献   

13.
余海清 《山东化工》2011,40(7):20-23
以河南某煤种为反应原料,采用Aspen Plus流程模拟软件对水煤浆气化工艺过程进行了流程模拟,考察分析了气化炉内的氧煤比和煤浆浓度等原料条件以及气化温度和压力等操作条件对气化反应结果的影响,并将模拟结果与实验结果进行比较,结果表明:模型基本正确,在误差许可范围内,模拟结果与气化实验结果基本一致;氧煤比、水煤浆浓度和气化温度是影响气化反应结果的主要因素;气化压力则对煤气化反应结果几乎没有影响,但是加压气化有利于降低后续工段合成气压缩能耗。  相似文献   

14.
利用Aspen Plus软件模拟了以CO2和干煤粉为主要原料的气流床气化生产CO的工艺技术,研究了该工艺路线和反应条件的可操作性和合理性,在此基础上进行了实验室平台实验,实验结果与模拟结果高度吻合,说明采用基于粉煤气流床气化的CO2制CO工艺路线是可行的,进一步分析指出该工艺的两个关键操作指标为温度和压力。研究可为未来放大研究和工艺放大提供理论参考。  相似文献   

15.
采用Aspen Plus流程模拟软件模拟了水煤浆水冷壁废锅气化过程,并将模拟结果与工业运行数据对比,验证了模型准确性。在此基础上,分析了气化压力和水煤浆浓度对气化温度、有效气产量、合成气组成、氧煤比、比氧耗和比煤耗等气化参数的影响。结果表明,气化压力对气化过程基本没有影响,可根据需要选择适宜压力;当保持氧气流量恒定时,随水煤浆浓度增大,有效气含量增加,气化温度升高,即提高水煤浆浓度易导致气化炉飞温,因此进一步研究了在前述模拟条件不变,且保持气化温度恒定时,水煤浆浓度变化对气化参数的影响。结果表明,随水煤浆浓度增大,氧煤比降低,有效气含量增加,比氧耗、比煤耗降低,因此在气化炉不超温的情况下,应尽量提高水煤浆的浓度,以降低系统能耗。  相似文献   

16.
以氧气-水蒸气-二氧化碳作为气化介质,松木屑为原料,采用Aspen Plus软件,结合自建模型,对生物质气化进行了模拟研究。首先,利用文献中的数据对模型进行了验证,模拟结果与文献中的数据基本吻合,证明了该模型的正确性。接着,考察了气化温度、氧气用量(cER)、水蒸气与生物质质量比(mS/mB)、二氧化碳与生物质质量比(mCO2/mB)对产气组成、气体热值、气体产率、气化效率和产气氢碳比(nH2/nCO)的影响。结果表明:在850℃、101.325kPa、cER=0.2、mS/mB=1、mCO2/mB=0.6的条件下,气化产物特性为气体热值7.45MJ/m3、气体产率1.78m3/kg、气化效率73.3%、氢碳比1.79。适当提高气化温度有利于气化。cER的增大使气体热值、产率和气化效率均迅速降低;但对产气中氢碳比的影响较小。此外,气化剂中水蒸气的适量增加有利于氢气的产生并能明显提高其体积分数,二氧化碳的适量增加有利于一氧化碳的产生并能在一定程度上提高其体积分数,二者均能有效调节产气的氢碳比。  相似文献   

17.
介绍了36t/d加压气流床气化中试装置主要设备、工艺流程及工艺条件的选择,并给出采用神木煤在气化压力3.0MPa、干粉煤投量1t/h条件下取得的主要试验数据:碳转化率98.9%,冷煤气效率83.2%,并给出相应的氧、煤耗,试验结果基本达到预期目的。  相似文献   

18.
贺鑫平  余涛  周敬林 《煤化工》2012,40(5):19-23
对低阶煤制浆和传统制浆工艺进行了技术分析,并介绍了分级研磨制浆工艺。通过建立AspenPlus水煤浆气化模型,考察了神华煤在不同煤浆浓度(质量分数58%~65%)下的气化指标,得出了采用分级研磨制浆工艺,气化的比煤耗可降低2.57%~2.14%,比氧耗可降低5.76%~5.05%。结合超细磨机系统的电耗,得出1 000 m(3 CO+H2)可节省能耗553.7 MJ~438.2 MJ。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号