首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了预测采空区遗煤自燃问题,以豹子沟煤矿10101综放面采空区遗煤为研究对象,利用煤自然发火气体产物模拟试验系统测试煤低温氧化过程标志性气体释放种类。试验表明:采空区遗煤与氧气发生低温氧化过程中,会伴随产生CO、CO_2、CH_4、C_2H_2、C_2H_4、C_3H_6、C_3H_8和C_4H_(10)等气体。分析发现CO浓度随采空区遗煤低温氧化阶段温度升高而逐渐增大的程度比其他气体更明显。CO是标志煤低温氧化的最佳气体,对采空区CO进行研究有利于早期预测采空区遗煤自燃情况。  相似文献   

2.
为解决补连塔矿22煤采空区长期浸水的遗煤自燃预测预报问题,针对含水煤样自燃预测预报研究较少的问题,通过对5种不同含水率的长焰煤进行程序升温试验研究,分析温度升高过程中的遗煤自热氧化气体产物及其浓度变化规律,对煤自燃预测预报指标气体进行优选。研究结果表明:浸水的遗煤低温氧化具有分阶段特性,在煤样浸水程度不同的复杂情况下,提出以φ(CO)/φ(CO_2)、φ(O_2)/Δφ(CO_2-CO)、φ(C_2H_4)/φ(C_2H_6)以及C_2H_6、C_2H_4和C_3H_8作为煤自燃预测预报指标,并且当φ(CO)/φ(CO_2)≤0.1或φ(O_2)/Δφ(CO_2-CO)≥0.02时,则煤处于吸氧蓄热阶段(30~100℃),当0.8≤φ(C_2H_4)/φ(C_2H_6)≤1.10时,则煤处于自热氧化阶段(100~140℃),当φ(CO)/φ(CO_2)≥0.5或φ(O_2)/Δφ(CO_2-CO)≤0.005时,则煤处于加速氧化阶段(140~230℃)。研究结果对采空区遗煤的自燃防控具有一定的指导作用,结合现场实际情况,及时对参数指标进行修正,完善煤自燃预测预报指标,可有效预防煤自燃灾害事故的发生。  相似文献   

3.
为掌握煤层露头火灾的发展演化规律,采用高温程序升温试验系统模拟了风化煤的高温氧化自燃过程,得到了从常温到650℃高温氧化过程中的宏观自燃特性及其表征参数,并应用指标气体的增长率分析法确定出风化煤高温氧化的特征温度点。结果表明:风化煤在高温低氧浓度条件下仍能持续发生氧化反应,并放出大量的热量,来维持其自燃;风化煤内含有的腐植酸会随着煤温的升高,逐渐发生热分解反应,从而导致氧化反应,产生的CO_2、CH_4、C_2H_4、C_2H_6浓度增加,且CH_4、C_2H_4、C_2H_6浓度随煤温的变化规律相似,由于风化煤受到化学风化作用,使这3种气体在低温阶段的浓度都比较小,之后随着温度的升高而迅速增大;此外,煤样粒径0.9 mm时高温氧化产生的CO浓度,比其他粒径下的CO浓度总体上都大;在400~590℃,煤样粒径为7~10 mm时,高温氧化产生的CO浓度最小。  相似文献   

4.
为了研究采空区不同粒径遗煤自燃特性,基于煤氧复合学说,采用煤自燃程序升温试验装置测试6种粒径下随煤温变化的自燃特性参数。试验结果表明,双柳矿13302综放面煤样的临界温度为70~80℃,干裂温度为110~120℃;在整个升温过程中,耗氧率及CO、CO_2气体产生量与煤温成正比,与煤样粒径成反比;CO气体可作为预测煤矿采空区自燃的指标性气体,而CH_4和C2H6不能作为预测煤矿采空区自燃的指标性气体。试验结果可为采空区自燃危险区域判定提供基础参数。  相似文献   

5.
基于程序升温实验,对东胜褐煤、补连塔不黏煤、保德气煤的CH_4、C_2H_6、C_2H_4/C_2H_6值、△CO/△O_2值、O_2等自燃标志气体进行测定。结果表明:CO的产生存在于整个氧化过程;CH_4出现的时间与CO相当,但浓度低于CO,且在不同煤种中有不同的显现规律;C_2H_6出现时间晚于CO和CH_4,C_2H_4出现的时间最晚,在较高温度段才出现。煤氧化不同阶段特征气体的表现形式不同,判断煤的自燃阶段时避免采用单一CO气体指标,应选取不同的特征气体作为煤自燃阶段的预警指标以提高煤自燃预报的可靠性。对于测试煤种,应选择CO和C_2H_4作为煤炭自燃氧化的指标气体,并将CH_4、C_2H_6、C_2H_4/C_2H_6值、△CO/△O_2值、O_2作为自燃辅助预警指标。  相似文献   

6.
通过煤自燃程序升温实验,分析了在不同温度下平顶山矿区己组煤样的耗氧速度以及CO_2、CO、CH_4、C_2H_4、C_2H_6等气体的产生量,研究了己组煤在整个氧化阶段气体产物的生成规律及其特征,得出煤样耗氧量与煤温升高之间的对应关系。最终确定CO、C_2H_4、C_2H_6作为判断己组煤自然发火的不同阶段的标志性气体,CO/CO_2、C_2H_4/C_2H_6比值作为辅助指标。根据试验结果确定平顶山矿区己组煤自燃标志性气体临界判别指标值,为实现己组煤自然发火的准确预测预判提供依据。  相似文献   

7.
为了明确小风量对煤自燃产生气体的影响,采用自制煤自燃程序升温实验装置,研究分析了不同小风量(1、2 mL/min及3 mL/min)条件下气体产生规律。结果表明:常温下氧浓度在13.08%时,煤样仍能够发生氧化;风量越小,氧浓度越低,CO气体浓度越高;工作面供风量减小,导致采空区出现CO气体浓度增大,停采时间越长,采空区CO气体浓度越大,但是并不能证明采空区温度有上升趋势。  相似文献   

8.
《煤矿安全》2021,52(5):31-35
针对复采煤层的煤的自然发火现状,分析荆各庄矿的4种不同复采时间的氧化煤自燃特性的差异。采用程序升温-气相色谱联用实验,对比不同复采时间煤样的自燃氧化过程中的特征气体含量变化和自燃倾向性变化。结果表明:4种煤样产生的CO体积分数在170℃前后呈现不同的变化规律;复采时间越长的氧化煤,煤样产生CH_4、C_2H_4、C_2H_6气体的时间越晚;通过对不同煤样交叉点温度和FCC复合指标的综合分析,得出短时间复采的煤样其自燃氧化能力强于长时间复采的煤;在同一种煤的低温段和高温段,自燃倾向性也随着表观活化能在不断变化。  相似文献   

9.
卫浩 《煤》2019,(4)
为了研究和掌握凤凰山矿15号煤层自燃发火规律,利用程序升温氧化实验,得出15号煤的临界温度在60~70℃之间,干裂温度在120~130℃之间,同时,确定以CO为主、C_2H_4为辅的预测预报自燃指标气体,并且利用复合气体φ(CO)/φ(CO_2)的比值与煤温的对应关系测算煤样的低温氧化进程,为井下煤自燃防治提供参考。  相似文献   

10.
《煤矿安全》2019,(11):18-23
为提高柴家沟矿4~(-2)煤层自燃预测预报准确性,采用XK-Ⅶ大型煤自燃实验台模拟4~(-2)煤层自然发火过程,对自燃特性参数、单一标志气体、复合标志气体进行分析。实验证明:当煤温在70~80℃时,煤样耗氧速率明显加快,放热强度曲线斜率逐渐增大,当煤温在100~120℃时,耗氧速率迅猛增加,放热强度曲线斜率明显增大,故推断4~(-2)煤层自燃临界温度在68~80℃,干裂温度在100~120℃;由于φ(CO)、φ(O_2)/φ(CO+CO_2)随煤温变化的灵敏性和规律性强,且在井下容易检测,故将φ(CO)、φ(O_2)/φ(CO+CO_2)选作预测4~(-2)煤层自燃的主要标志气体参数;由于φ(C_2H_4)、φ(CH_4)/φ(C_2H_6)、φ(C_2H_4)/φ(C_2H_6)能从一定程度上反映4~(-2)煤层自燃发展阶段,故将φ(C_2H_4)、φ(CH_4)/φ(C_2H_6)、φ(C_2H_4)/φ(C_2H_6)选作预测4~(-2)煤层自燃高温阶段的辅助标志气体参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号