首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel member of the low density lipoprotein receptor (LDLR) gene family has been identified and characterized. This gene, termed LDL receptor-related protein 6 (LRP6), encodes a transmembrane protein which has 71% identity and is structurally similar to the protein encoded by LRP5, a proposed candidate gene for type 1 diabetes located on human chromosome 11q13. LRP6 maps to human chromosome 12p11-p13. Mouse Lrp6 encodes a protein that has 98% identity to human LRP6 and maps to chromosome 6. Unlike other members of the LDLR family, LRP6 and LRP5 display a unique pattern of four epidermal growth factor (EGF) and three LDLR repeats in the extracellular domain. The cytoplasmic domain of LRP6 is not similar to other members of the LDLR family, while comparison with LRP5 reveals proline-rich motifs that may mediate protein-protein interactions. Thus, it is likely that LRP6 and LRP5 comprise a new class of the LDLR family.  相似文献   

2.
The isolation and characterization of rabbit and human cDNAs revealed a new low density lipoprotein receptor (LDLR)-related protein (LRP) designated as LRP5. Human LRP5 cDNA encodes a 1, 616-amino acid type I membrane-like protein with three ligand binding repeats in its extracellular region. LDLR-deficient cells transduced by recombinant adenovirus containing human LRP5 exhibited increased binding of apolipoprotein E (apoE)-enriched beta-migrating very low density lipoprotein. Northern blotting and in situ hybridization revealed a high level of LRP5 expression in hepatocytes and the adrenal gland cortex. In LDLR-deficient Watanabe heritable hyperlipidemic rabbits, LRP5 mRNA was increased in the liver and accumulated in cholesterol-laden foam cells of atherosclerotic lesions.  相似文献   

3.
According to the secretion-capture model of remnant lipoprotein clearance, apo E secreted by hepatocytes into the space of Disse serves to enrich the remnants with a ligand for receptor-mediated lipoprotein endocytosis. Current evidence supports a two-receptor model of lipoprotein removal, in which apo E-containing remnants bind either the low density lipoprotein receptor (LDLR) or the LDLR-related protein (LRP). Recently, we demonstrated that reconstitution of apo E(-/-) mice with apo E(+/+) marrow results in normalization of plasma lipoprotein levels, indicating that hepatic expression of apo E is not required for remnant clearance and calling into question the relevance of the secretion-capture mechanism. To dissect the relative contributions of LDLR and LRP to the cellular catabolism of remnant lipoproteins by the hepatocyte, bone marrow transplantation (BMT) was used to reconstitute macrophage expression of apo E in mice that were null for expression of both apo E and the LDLR. Reconstitution of macrophage apo E in apo E(-/-)/LDLR(-/-) mice had no effect on serum lipid and lipoprotein concentrations, although it produced plasma apo E levels up to 16-fold higher than in C57BL/6 controls. Immunocytochemistry of hepatic sections revealed abundant staining for apo E in the space of Disse, but no evidence of receptor-mediated endocytosis of remnant lipoproteins. Transient expression of human LDLR in the livers of apo E(+/+)--> apo E(-/-)/LDLR(-/-) mice by adenoviral gene transfer resulted in normalization of serum lipid levels and in the clearance of apo E-containing lipoproteins from the space of Disse. We conclude that whereas the LDLR efficiently clears remnant lipoproteins irrespective of the site of origin of apo E, endocytosis by the chylomicron remnant receptor (LRP) is absolutely dependent on hepatic expression of apo E. These data demonstrate in vivo the physiologic relevance of the apo E secretion-capture mechanism in the liver.  相似文献   

4.
To study structure-function relationships in low density lipoprotein receptor (LDLR), a key protein in human cholesterol metabolism, it is reasonable to operate with separate protein domains. To obtain highly purified functionally active LDLR ligand-binding domain, we have cloned the corresponding LDLR cDNA fragment in two expression plasmid vectors of Escherichia coli. We have developed methods to purify fusion and practically individual recombinant proteins and characterized the obtained products biochemically. Antibodies raised against fused with beta-galactosidase and individual recombinant protein have been shown to be efficient in identification of LDLR protein in crude lysates of human fibroblasts (cell line HT-1080).  相似文献   

5.
The low density lipoprotein receptor-related protein (LRP), a member of the low density lipoprotein receptor gene family, mediates the cellular uptake of a diversity of ligands. A folding chaperone, the 39-kDa receptor-associated protein (RAP) that resides in the early compartments of the secretory pathway inhibits the binding of all ligands to the receptor and may serve to prevent premature binding of ligands to the receptor during the trafficking to the cell surface. To elucidate the molecular interactions that underlie the interplay between the receptor, RAP, and the ligands, we have analyzed and delineated the binding sites of plasminogen activator inhibitor-1 (PAI-1), tissue-type plasminogen activator (t-PA).PAI-1 complexes, RAP, and the anti-LRP Fab fragment Fab A8. To that end, we have generated a series of soluble recombinant fragments spanning the second cluster of complement-type repeats (C3-C10) and the amino-terminal flanking epidermal growth factor repeat (E4) of LRP (E4-C10; amino acids 787-1165). All fragments were expressed by stably transfected baby hamster kidney cells and purified by affinity chromatography. A detailed study of ligand binding to the fragments using surface plasmon resonance revealed the presence of three distinct, Ca2+-dependent ligand binding sites in the cluster II domain (Cl-II) of LRP. t-PA.PAI-1 complexes as well as PAI-1 bind to a domain located in the amino-terminal portion of Cl-II, spanning repeats E4-C3-C7. Adjacent to this site and partially overlapping is a high affinity RAP-binding site located on repeats C5-C7. Fab A8, a pseudo-ligand of the receptor, binds to a third Ca2+-dependent binding site on repeats C8-C10 at the carboxyl-terminal end of Cl-II. Next, we studied the RAP-mediated inhibition of ligand binding to LRP and to Cl-II. As expected, we observed a strong inhibition of t-PA.PAI-1 complex and Fab A8 binding to LRP by RAP (IC50 congruent with 0.3 nM), whereas in the reverse experiment, competition of t-PA. PAI-1 complexes and Fab A8 for RAP binding to LRP could only be shown at high concentrations of competitors (>/=1 microM). Interestingly, even though the equilibrium dissociation constants for the binding of RAP to LRP and to Cl-II are similar, the binding of the ligands to Cl-II is only prevented by RAP at concentrations that are at least 2 orders of magnitude higher than those required for inhibition of ligand binding to LRP. Our results favor models that propose RAP-induced allosteric inhibition of ligand binding to LRP that may require LRP moieties that are located outside Cl-II of the receptor.  相似文献   

6.
Megalin is a large cell surface receptor that mediates the binding and internalization of a number of structurally and functionally distinct ligands from the lipoprotein and protease:protease inhibitor families. To begin to address how megalin is able to bind ligands with unique structurally properties, we have mapped a binding site for apolipoprotein E (apoE)-beta very low density lipoprotein (beta VLDL), lipoprotein lipase, aprotinin, lactoferrin, and the receptor-associated protein (RAP) within the primary sequence of the receptor. RAP is known to inhibit the binding of all ligands to megalin. We identified a ligand-binding site on megalin by raising mAb against purified megalin, selected for a mAb whose binding to megalin is inhibited by RAP, and mapped the epitope for this mAb. mAb AC10 inhibited the binding of apoE-beta VLDL, lipoprotein lipase, aprotinin, and lactoferrin to megalin in a concentration-dependent manner. When cDNA fragments encoding the four cysteine-rich ligand-binding repeats in megalin were expressed in a baculovirus system and immunoblotted with AC10, it recognized only the second cluster of ligand-binding repeats. The location of the epitope recognized by mAb AC10 within this domain was pinpointed to amino acids 1111-1210. From these studies we conclude that the binding of apoE-beta VLDL, lactoferrin, aprotinin, lipoprotein lipase, and RAP to megalin is either competitively or sterically inhibited by mAb AC10 suggesting that these ligands bind to the same or closely overlapping sites within the second cluster of ligand-binding repeats.  相似文献   

7.
Insect vitellogenin and yolk protein receptors (VgR/YPR) are newly discovered members of the low-density lipoprotein receptor (LDLR) family, which is characterized by a highly conserved arrangement of repetitive modular elements homologous to functionally unrelated proteins. The insect VgR/YPRs are unique in having two clusters of complement-type cysteine-rich (class A) repeats or modules, with five modules in the first cluster and seven in the second cluster, unlike classical LDLRs which have a single seven-module cluster, vertebrate VgRs and very low density lipoprotein receptors (VLDLR) which have a single eight-module cluster, and LDLR-related proteins (LRPs) and megalins which have four clusters of 2-7, 8, 10, and 11 modules. Alignment of clusters across subfamilies by conventional alignment programs is problematic because of the repetitive nature of the component modules which may have undergone rearrangements, duplications, and deletions during evolution. To circumvent this problem, we "fingerprinted" each class A module in the different clusters by identifying those amino acids that are both relatively conserved and relatively unique within the cluster. Intercluster reciprocal comparisons of fingerprints and aligned sequences allowed us to distinguish four cohorts of modules reflecting shared recent ancestry. All but two of the 57 modules examined could be assigned to one of these four cohorts designated A, B, C, and D. Alignment of clusters based on modular cohorts revealed that all clusters are derived from a single primordial cluster of at least seven modules with a consensus arrangement of CDCADBC. All extant clusters examined are consistent with this consensus, though none matches it perfectly. This analysis also revealed that the eight-module clusters in vertebrate VgRs, insect VgR/YPRs, and LRP/megalins are not directly homologous with one another. Assignment of modules to cohorts permitted us to properly align 32 class A clusters from all four LDLR subfamilies for phylogenetic analysis. The results revealed that smaller one-cluster and two-cluster members of the family did not originate from the breakup of a large two-cluster or four-cluster receptor. Similarly, the LRP/megalins did not arise from the duplication of a two-cluster insect VgR/YPR-like progenitor. Rather, it appears that the multicluster receptors were independently constructed from the same single-cluster ancestor.  相似文献   

8.
The recent cloning and sequencing of several insect vitellogenins (Vg), the major yolk protein precursor of most oviparous animals, and the mosquito Vg receptor (VgR) has brought the study of insect vitellogenesis to a new plane. Insect Vgs are homologous to nematode and vertebrate Vgs. All but one of the insect Vgs for which we know the primary structure are cleaved into two subunits at a site [(R/K)X(R/K)R or RXXR with an adjacent beta-turn] recognized by subtilisin-like proprotein convertases. In four of the Vgs, the cleavage site is near the N-terminus, but in one insect species, it is near the C-terminus of the Vg precursor. Multiple alignments of these Vg sequences indicate that the variation in cleavage location has not arisen through exon shuffling, but through local modifications of the amino acid sequences. A wasp Vg precursor is not cleaved, apparently because the sequence at the presumed ancestral cleavage site has been mutated from RXRR to LYRR and is no longer recognized by convertases. Some insect Vgs contain polyserine domains which are reminiscent of, but not homologous to, the phosvitin domain in vertebrate Vgs. The sequence of the mosquito VgR revealed that it is a member of the low-density lipoprotein receptor (LDLR) family. Though resembling chicken and frog VgRs, which are also members of the LDLR family, it is twice as big, carrying two clusters of cysteine-rich complement-type (Class A) repeats (implicated in ligand-binding) instead of one like vertebrate VgRs and LDLRs. It is very similar in sequence and domain arrangement to the Drosophila yolk protein receptor (YPR), despite a non-vitellogenin ligand for the latter. Though vertebrate VgRs, insect VgR/YPRs, and LDLR-related proteins/megalins all accommodate one cluster of eight Class A repeats, fingerprint analysis of the repeats in these clusters indicate they are not directly homologous with one another, but have undergone differing histories of duplications, deletions, and exon shuffling so that their apparent similarity is superficial. The so-called epidermal growth factor precursor region contains two types of motifs (cysteine-rich Class B repeats and YWXD repeats) which occur independently of one another in diverse proteins, and are often involved in protein-protein interactions, suggesting that they potentially are involved in dimerization of VgRs and other LDLR-family proteins. Like the LDLR, but unlike vertebrate VgRs and the Drosophila YPR, the mosquito VgR contains a putative O-linked sugar region on the extra-cellular side of the transmembrane domain. Its function is unclear, but may protect the receptor from membrane-bound proteases. The cytoplasmic tail of insect VgR/YPRs contains a di-leucine (or leucine-isoleucine) internalization signal, unlike the tight-turn tyrosine motif of other LDLR-family proteins. The importance of understanding the details of yolk protein uptake by oocytes lies in its potential for exploitation in novel insect control strategies, and the molecular characterization of the proteins involved has made the development of such strategies a realistic possibility.  相似文献   

9.
Glycoprotein 330 (gp330), a cell-surface protein that is localized in clathrin-coated pits, is structurally related to both the low density lipoprotein receptor (LDLR) and the LDLR-related protein/alpha 2-macroglobulin receptor (LRP). We recently demonstrated that gp330 and LRP may be functionally related as well; both bind the 39-kDa polypeptide referred to as receptor-associated protein (Kounnas, M. Z., Argraves, W. S., and Strickland, D. K. (1992) J. Biol. Chem. 267, 21162-21166). In this report, we tested several other LRP ligands for their ability to interact with human and rat gp330 in vitro. Gp330 did not exhibit detectable binding to the LRP ligands, alpha 2-macroglobulin protease complex or Pseudomonas aeruginosa exotoxin A. However, we found that gp330 (purified from human or rat) bound the lipolytic enzyme lipoprotein lipase (LPL) with high affinity (Kd = 6.1 and 2.7 nM, respectively). The binding was saturable, divalent cation dependent, and inhibited by heparin or receptor-associated protein. Because LRP has also been shown to bind LPL, the present findings further extend the functional similarities between gp330 and LRP. By analogy to the postulated role of the LRP-LPL interaction in facilitating hepatic clearance of LPL-associated lipoproteins from the blood (Beisiegel, U., Weber, W., and Bengtsson-Olivercrona, G. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 8342-8346; Chappell, D. A., Fry, G. L., Waknitz, M. A., Iverius, P. H., Williams, S. E., and Strickland, D. K. (1992) J. Biol. Chem. 267, 25764-25767), we speculate that the gp330-LPL interaction described herein may contribute to the uptake of LPL-associated lipoproteins in tissues expressing gp330. Consistent with this possibility, we found that LPL promoted in vitro binding of 125I-lipoproteins to gp330.  相似文献   

10.
The role of the low density lipoprotein receptor (LDLR) in the clearance of apo-B48-containing lipoproteins and the role of the LDLR-related protein (LRP) in the removal of apo-B100-containing lipoproteins have not been clearly defined. To address these issues, we characterized LDLR-deficient mice homozygous for an "apo-B48-only" allele, an "apo-B100-only" allele, or a wild-type apo-B allele (Ldlr-/- Apob48/48, Ldlr-/-Apob100/100, and Ldlr-/-Apob+/+, respectively). The plasma apo-B48 and LDL cholesterol levels were higher in Ldlr-/-Apob48/48 mice than in Apob48/48 mice, indicating that the LDL receptor plays a significant role in the removal of apo-B48-containing lipoproteins. To examine the role of the LRP in the clearance of apo-B100-containing lipoproteins, we blocked hepatic LRP function in Ldlr-/-Apob100/100 mice by adenoviral-mediated expression of the receptor-associated protein (RAP). RAP expression did not change apo-B100 levels in Ldlr-/-Apob100/100 mice. In contrast, RAP expression caused a striking increase in plasma apo-B48 levels in Apob48/48 and Ldlr-/-Apob48/48 mice. These data imply that LRP is important for the clearance of apo-B48-containing lipoproteins but plays no significant role in the clearance of apo-B100-containing lipoproteins.  相似文献   

11.
The large family of human rhinoviruses, the main causative agents of the common cold, is divided into the major and the minor group based on receptor specificity. Major group viruses attach to intercellular adhesion molecule 1 (ICAM-1), a member of the immunoglobulin superfamily, whereas minor group viruses use low-density lipoprotein receptors (LDLR) for cell entry. During early attempts aimed at isolating the minor group receptor, we discovered that a protein with virus binding activity was released from HeLa cells upon incubation with buffer at 37 degreesC (F. Hofer, B. Berger, M. Gruenberger, H. Machat, R. Dernick, U. Tessmer, E. Kuechler, and D. Blaas, J. Gen. Virol. 73:627-632, 1992). In light of the recent discovery of several new members of the LDLR family, we reinvestigated the nature of this protein and present evidence for its being derived from the human very-low density lipoprotein receptor (VLDLR). A soluble VLDLR fragment encompassing the eight complement type repeats and representing the N-terminal part of the receptor was then expressed in the baculovirus system; both the shed protein and the recombinant soluble VLDLR bind minor group viruses and inhibit viral infection of HeLa cells in a concentration-dependent manner.  相似文献   

12.
The amino-terminal region of the low-density lipoprotein receptor (LDLR) contains seven imperfect repeats of a cysteine-rich, roughly 40-aa module (LDL-A module) that are critical for apolipoprotein binding. LDL-A modules are found in numerous cell-surface and secreted proteins and are believed to mediate extracellular protein-protein interactions. The cellular receptor for subgroup A Rous sarcoma virus (RSV) contains a single LDL-A module that binds the RSV envelope protein and allows viral infection. To define residues in an LDL-A module responsible for ligand recognition, we used a gain of function assay by using a chimeric protein in which the LDL-A module of Tva was replaced with a highly homologous module from human LDLR (LDL-A4) and determined whether this chimera or mutants produced in it could mediate RSV infection. LDL-A4 does not function as an RSV receptor; however, systematic replacement of the nonconserved residues of the LDL-A4 module in the chimeric protein with the corresponding residues from Tva identified three residues sufficient to alter ligand specificity and convert LDL-A4 to an efficient viral receptor. Mutations of the corresponding residues in the Tva LDL-A module decreased both envelope binding and viral receptor function, confirming the importance of these residues in ligand recognition by this module. Analysis of the hLDL-A5 structure demonstrates that these three residues are clustered at one end of the LDL-A module. These results demonstrate that using a single LDL-A module in a gain of function assay is a useful model to investigate ligand recognition by this module.  相似文献   

13.
The multiligand receptor, low density lipoprotein receptor-related protein (LRP), is implicated in processes such as atherosclerosis and fibrinolysis through its mediation of the catabolism of lipoproteins, proteases, and protease inhibitor complexes. The hepatoma cell line Hep G2 expresses LRP and has been used widely to investigate the catabolism of LRP ligands including tissue-type plasminogen activator (tPA). However, the mechanism and degree by which tPA interacts with Hep G2 has been reported with some inconsistencies which may reflect variation in their level of LRP expression. To address this possibility we characterized, antigenically and functionally, LRP expression in high and low passage Hep G2 cells both from the parental line (ATCC sourced) and a cloned subline, a16. The LRP contribution to 125I-tPA binding varied from 65% for high passage a16 cells, to 20% for low passage parent cells as quantified by inhibition in the presence of 39-kD receptor associated protein (RAP) which prevents binding of all known LRP ligands. The same trend in LRP expression among Hep G2 sublines was further evident in their ability to degrade 125I-tPA and survive Pseudomonas exotoxin A challenge. These results imply wide variability in basal LRP expression among Hep G2 lines dependent on cell lineage and long-term culture conditions.  相似文献   

14.
15.
The 39-kDa receptor-associated protein (RAP) is an endoplasmic reticulum resident protein that binds to the low density lipoprotein receptor-related protein (LRP) as well as certain members of the low density lipoprotein receptor superfamily and antagonizes ligand binding. In order to identify important functional regions of RAP, studies were performed to define the domain organization and domain boundaries of this molecule. Differential scanning calorimetry (DSC) experiments revealed that the process of thermal denaturation of RAP is highly reversible and occurs in a broad temperature range with two well resolved heat absorption peaks. A good fit of the endotherm was obtained with four two-state transitions suggesting these many cooperative domains in the molecule. A number of recombinant fragments of RAP were expressed in bacteria, and their domain composition and stability were characterized by DSC, circular dichroism, and fluorescence spectroscopy. The results confirmed that RAP is composed of four independently folded domains, D1, D2, D3, and D4, that encompass residues 1-92, 93-163, 164-216, and 217-323, respectively. The first and the fourth domains preserved their structure and stability when isolated, whereas the compact structure of the fragment corresponding to D2 seems to be altered when isolated from the parent molecule. Isolated D3 was partially degraded during isolation from bacterial lysates. The isolated D4 was capable of binding with high affinity to LRP whereas neither D1 nor D2 bound. At the same time a fragment containing both D1 and D2 exhibited high affinity binding to LRP. These facts combined with the thermodynamic analysis of the melting process of the fragments containing D1 and D2 indicate that these two domains interact with each other and that the proper folding of the second domain into a native-like active conformation requires presence of the first domain.  相似文献   

16.
17.
A >23-kb gene that encodes a large integral membrane protein with a predicted structure similar to that of the low density lipoprotein (LDL) receptor-related protein (LRP) of mammals has been isolated and sequenced from the free-living nematode Caenorhabditis elegans. The 4753-amino acid predicted C. elegans product shares a nearly identical number and arrangement of amino acid sequence motifs with human LRP, and several exons of the C. elegans LRP gene correspond to exons of related parts of the human LDL receptor gene. The existence of an apparent homolog of LRP in C. elegans offers the possibility of genetic analysis of the in vivo roles of LRP and of the relationship between protein structure and function in a simple model organism.  相似文献   

18.
LR7/8B is a member of the low density lipoprotein receptor gene family that is specifically synthesized in the brain. Here we have functionally expressed in 293 cells the splice variant harboring eight ligand binding repeats (LR8B). As assessed by confocal microscopy, the expressed receptor is localized to the plasma membrane. Importantly, in cell binding experiments, we demonstrate that this protein is a receptor for activated alpha2-macroglobulin. Because to date low density lipoprotein receptor-related protein (LRP) has been shown to be the only alpha2-macroglobulin receptor in brain, we became interested in the expression pattern of both proteins at the cellular level in the brain. LR7/8B is expressed in large neurons and Purkinje cells of the cerebellum and in cells constituting brain barrier systems such as the epithelial cells of the choroid plexus, the arachnoidea, and the endothelium of penetrating blood vessels. Anti-LR7/8B antibody stains the plasma membrane, dendrites, and vesicular structures close to the cell membrane of neurons, especially of Purkinje cells. In contrast, LRP is present in patchy regions around large neurons and most prominently in the glomeruli of the stratum granulare of the cerebellum. This suggests that, contrary to LR7/8B, LRP is expressed in synaptic regions of the neurons; furthermore, there is a striking difference in the expression patterns of LR7/8B and LRP in the choroid plexus. Whereas LRP shows baso-lateral and apical localization in the epithelial cells, LR7/8B is restricted to the apical cell aspect facing the cerebrospinal fluid. Finally, these studies were extended to cultured primary rat neurons, where double immunofluorescence labeling with anti-LR7/8B and anti-microtubuli-associated protein 2 (MAP2) confirmed the somatodendritic expression of the receptor. Based upon these data, we propose that LR7/8B is involved in the clearance of alpha2-macroglobulin.proteinase complexes and/or of other substrates bound to alpha2-macroglobulin from the cerebrospinal fluid and from the surface of neurons.  相似文献   

19.
C766T, a polymorphism in exon 3 of the gene for the low-density lipoprotein receptor-related protein (LRP), was found to be associated with late-onset Alzheimer's disease (AD). We developed a PCR-restriction enzyme-based assay to analyze this allele in 234 AD patients and 103 controls. We confirmed that the LRP C766T polymorphism was in disequilibrium with AD--the C/C genotype was present in 76% of AD patients and 60% of controls (p < 0.01); however, the LRP polymorphism did not influence age at onset of AD.  相似文献   

20.
Glycoprotein 330 (gp330) is a member of a family of endocytic receptors related to the low density lipoprotein receptor. gp330 has previously been shown to bind a number of ligands in common with its family member, the low density lipoprotein receptor-related protein (LRP). To identify ligands specific for gp330 and relevant to its localization on epithelia such as in the mammary gland, gp330-Sepharose affinity chromatography was performed. As a result, a 70-kDa protein was selected from human milk and identified by protein sequencing to be apolipoprotein J/clusterin (apoJ). Solid-phase binding assays confirmed that gp330 bound to apoJ with high affinity (Kd = 14.2 nM). Similarly, gp330 bound to apoJ transferred to nitrocellulose after SDS-polyacrylamide gel electrophoresis. LRP, however, showed no binding to apoJ in either type of assay. The binding of gp330 to apoJ could be competitively inhibited with excess apoJ as well as with the gp330 ligands apolipoprotein E, lipoprotein lipase, and the receptor-associated protein, a 39-kDa protein that acts to antagonize binding of all known ligands for gp330 and LRP. Several cultured cell lines that express gp330 and ones that do not express the receptor were examined for their ability to bind and internalize 125I-apoJ. Only cells that expressed gp330 endocytosed and degraded radiolabeled apoJ. Furthermore, F9 cells treated with retinoic acid and dibutyryl cyclic AMP to increase expression levels of gp330 displayed an increased capacity to internalize and degrade apoJ. Cellular internalization and degradation of radiolabeled apoJ could be inhibited with unlabeled apoJ, receptor-associated protein, and gp330 antibodies. The results indicate that gp330 but not LRP can bind to apoJ in vitro and that gp330 expressed by cells can mediate apoJ endocytosis leading to lysosomal degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号