首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-aligned high-frequency InP/InGaAs double heterojunction bipolar transistors (DHBTs) have been fabricated on a Si substrate. A current gain of 40 was obtained for a DHBT with an emitter dimension of 1.6 μm×19 μm. The S parameters were measured for various bias points. In the case of IC=15 mA, f T was 59 GHz at VCE=1.8 V, and f max was 69 GHz at VCE=2.3 V. Due to the InP collector, breakdown voltage was so high that a VCE of 3.8 V was applied for IC=7.5 mA in the S-parameter measurements to give an fT of 39 GHz and an fmax of 52 GHz  相似文献   

2.
A theoretical investigation of Si/Si1-xGex heterojunction bipolar transistors (HBTs) undertaken in an attempt to determine their speed potential is discussed. The analysis is based on a compact transistor model, and devices with self-aligned geometry, including both extrinsic and intrinsic parameters, are considered. For an emitter area of 1×5 μm2, an ft of over 75 GHz and fmax of over 35 GHz were computed at a collector current density of 1×10 5 A/cm2 and VCB of 5 V  相似文献   

3.
The fabrication of a silicon heterojunction microwave bipolar transistor with an n+ a-Si:H emitter is discussed, and experimental results are given. The device provides a base sheet resistance of 2 kΩ/□ a base width 0.1 μm, a maximum current gain of 21 (VCE=6 V, Ic=15 mA), and an emitter Gummel number G E of about 1.4×1014 Scm-4. From the measured S parameters, a cutoff frequency ft of 5.5 GHz and maximum oscillating frequency fmax of 7.5 GHz at VCE=10 V, Ic=10 mA are obtained  相似文献   

4.
Very-high-performance common-emitter InP/InGaAs single heterojunction bipolar transistors (HBTs) grown by metalorganic molecular beam epitaxy (MOMBE) are reported. They exhibit a maximum oscillation frequency (fT) of 180 GHz at a current density of 1×105 A/cm2. this corresponds to an (RBCBC)eff=f T/(8πf2max) delay time of 0.12 ps, which is the smallest value every reported for common-emitter InP/InGaAs HBTs. The devices have 11 μm2 total emitter area and exhibit current gain values up to 100 at zero base-collector bias voltage. The breakdown voltage of these devices is high with measured BVCEO and BVCEO of 8 and 17 V, respectively  相似文献   

5.
This paper describes a novel fully planar AlGaAs/GaAs heterojunction bipolar transistor (HBT) technology using selective chemical beam epitaxy (CBE). Planarization is achieved by a selective regrowth of the base and collector contact layers. This process allows the simultaneous metallization of the emitter, base and collector on top of the device. For the devices with an emitter-base junction area of 2×6 μm2 and a base-collector junction area of 14×6 μm2, a current gain cut off frequency of 50 GHz and a maximum oscillation frequency of 30 GHz are achieved. The common emitter current gain hFE is 25 for a collector current density Jc of 2×104 A/cm2  相似文献   

6.
InAlAs/InGaAs HBTs with various emitter junction gradings are simulated using a self-consistent Monte Carlo simulator. The effects of the emitter junction grading and the shift of the emitter-base p-n junction into the emitter depletion region due to diffusion of the base dopant are investigated. A minimum transit time of 1.18 ps is predicted for an In(Ga1-xAlx)As grading with x=0.6 at the E-B interface and JC=0.7×105 A/cm2. Graded-base designs do not offer any transit time performance improvement compared with the graded E-B approach. For transient performance, the device switching time is found to remain constant at about 2.2 ps up to x0~0.7 but increases for larger values. A cutoff frequency as high as 270 GHz was observed for x0=0.7, indicating that the best transport can be achieved from intermediately graded rather than abrupt E-B junction designs  相似文献   

7.
Successful operation of submicron-square emitter AlGaAs/GaAs HBTs is demonstrated for the first time by using a fully mesa-structure-type emitter-base junction-area definition method with an AlGaAs hetero-guardring. The hetero-guardring reduces surface recombination current at the emitter-mesa edge to 1.4 μA/μm. This is 1/10 of that for devices without the guardring. Here, dc gains of 20, 26, and 40 are achieved for 0.5 μm×0.5 μm, 0.7 μm×0.7 μm, and 0.9 μm×0.9 μm emitter HBTs, respectively. An fT of 40 GHz, and an fmax of 30 GHz are obtained for 0.9 μm×0.9 μm at a JC of 1.0×105 A/cm2  相似文献   

8.
A high-performance 0.5-μm BiCMOS technology has been developed. Three layers of polysilicon are used to achieve a compact four-transistor SRAM bit cell size of less than 20 μm2 by creating self-aligned bit-sense and Vss contacts. A WSix polycide emitter n-p-n transistor with an emitter area of 0.8×2.4 μm2 provides a peak cutoff frequency (fT) of 14 GHz with a collector-emitter breakdown voltage (BVCFO) of 6.5 V. A selectively ion-implanted collector (SIC) is used to compensate the base channeling tail in order to increase fT and knee current without significantly affecting collector-substrate capacitance. ECL gate delays as fast as 105 ps can be obtained with this process  相似文献   

9.
AlGaAs/GaAs collector-up heterojunction bipolar transistors (HBTs) with a heavily carbon-doped base layer were fabricated using oxygen-ion implantation and zinc diffusion. The high resistivity of the oxygen-ion-implanted AlGaAs layer in the external emitter region effectively suppressed electron injection from the emitter, allowing collector current densities to reach values above 105 A/cm 2. For a transistor with a 2-μm×10-μm collector, fT was 70 GHz and fmax was as high as 128 GHz. It was demonstrated by on-wafer measurements that the first power performance of collector-up HBTs resulted in a maximum power-added efficiency of as high as 63.4% at 3 GHz  相似文献   

10.
AlInAs-GaInAs heterojunction bipolar transistors (HBTs) and static flip-flop frequency dividers have been fabricated. An ft and an fmax of 49 and 62 GHz, respectively, have been achieved in a device with a 2×5-μm2 emitter. Current-mode logic (CML) was used to implement static divide-by-two and divide-by-four circuits. The divide-by-two circuit operated at 15 GHz with 82-mW power dissipation for the single flip-flop. The divide-by-four circuit operated at 14.5 GHz with a total chip power dissipation of 444 mW  相似文献   

11.
AlGaAs/InGaAs P-n-p heterojunction bipolar transistors (HBTs) were fabricated using carbon-doped material grown by nonarsine metal-organic vapor-phase epitaxy (MOVPE). Fmax of 39 GHz and ft of 18 GHz were obtained. Operated in common-base mode, a P-n-p HBT achieved 0.5-W output power with 8-dB gain at 10 GHz; saturated output power was 0.69 W. Results are presented for devices with emitter lengths from 120 to 600 μm  相似文献   

12.
The fabrication and characterization of a new self-aligned HBT utilizing bridged base-electrode technology (BBT) are presented. This new technology simplifies the fabrication process and relaxes the limitations in device size scaling, thus decreasing the emitter size to 1 μm×1 μm. In spite of a large junction periphery area ratio, a good current gain of more than 10 is obtained in an HBT with an emitter size of 1 μm×1 μm. A series of fabricated HBTs shows excellent high-speed performance. The highest values of fT =90 GHz and fmax=63 GHz are obtained in an HBT with an emitter size of 1 μm×5 μm. The realization of HBTs with small emitters and excellent high-frequency characteristics demonstrates the effectiveness of this new technology  相似文献   

13.
The diffusion coefficient (Dh) and a value for the collector velocity (vh) of holes in AlGaAs/GaAs P-n-p HBTs (heterojunction bipolar transistors) were obtained from high-frequency measurements on structures with different base and collector widths. Quantities for Dh and v h of 5.6 cm2/s and 5.5×106 cm/s, respectively, were obtained by plotting the total emitter-collector delay versus inverse emitter current and extrapolating the data to infinite emitter current to obtain the base and collector transit delays. An ft and fmax as high as 15 and 29 GHz, respectively, were obtained for non-self-aligned (1-μm emitter mesa/base contact separation) devices with a 2.6-μm×10-μm emitter  相似文献   

14.
A new basic ohmic contact technology for AlGaAs/GaAs heterojunction bipolar transistors (HBTs) is presented. The effect of the device parameters on the high-frequency performance of HBT ICs for 10-Gb/s systems is analyzed, and it is shown that, at a cutoff frequency (fT) of 40 GHz or more, reducing base resistance or collector capacitance is more effective than increasing fT for obtaining high-frequency performance. A process is developed for fabricating base electrodes with a very low ohmic contact resistivity, ~10-7 Ω-cm2, by using a AuZn/Mo/Au alloy, which provides the required high performance. Self-aligned AlGaAs/GaAs HBTs, with a 2.5-μm×5-μm emitter, using a AuZn/Mo/Au alloy base metal and an undoped GaAs collector, are shown to have an fT and a maximum oscillation frequency of about 45 and 70 GHz, respectively, at 3.5 mA. An AGC amplifier with a 20-dB gain and a bandwidth of 13.7 GHz demonstrates stable performance  相似文献   

15.
An AlGaAs/GaAs nan heterojunction bipolar transistor (HBT) laser driver circuit and a pseudomorphic InGaAs/GaAs/AlGaAs graded index single-quantum-well (SQW) laser have been laterally integrated to maintain surface planarity using selective organometallic vapor-phase epitaxy (OMVPE) regrowth of the HBT. The self-aligned HBTs exhibit a DC current gain of 30 and an ft (fmax ) of 45(60) GHz. The 980-nm lasers exhibit room-temperature threshold current densities as low as 420(320) A/cm2 for CW (pulsed) operation. The cavities are 40(7) μm×500 μm and have less than 1(2) Ω of series resistance. SPICE simulations of the integrated driver indicate that operating speeds of over 10 Gb/s are possible  相似文献   

16.
This paper describes the fabrication and characteristics of small-scaled InGaP/GaAs HBTs with high-speed as well as low-current operation. To reduce both the emitter size SE and the base-collector capacitance CBC simultaneously, the HBTs are fabricated by using WSi/Ti as the base electrode and by burying SiO2 in the extrinsic base-collector region under the base electrode. WSi/Ti simplifies and facilitates processing to fabricate a small base electrode, and makes it possible to reduce the width of the base contact to less than 0.4 μm without the large increase in the base resistance. The DC current gain of 20 is obtained for an HBT with S E of 0.3×1.6 μm2 due to the suppression of emitter size effect by using InGaP as the emitter material. An HBT with SE of 0.6×4.6 μm2 exhibited fT of 138 GHz and fmax of 275 GHz at IC of 4 mA; and an HBT with SE of 0.3×1.6 μm2 exhibited fT of 96 GHz and fmax of 197 GHz at IC of 1 mA. These results indicate the great potential of these HBTs for high-speed and low-power circuit applications  相似文献   

17.
In self-aligned polysilicon emitter transistors a large electric field existing at the periphery of the emitter-base junction under reverse bias can create hot-carrier-induced degradation. The degradation of polysilicon emitter transistor gain under DC stress conditions can be modelled by ΔIBIR m+ntn where n≈0.5 and m ≈0.5. The more complex relationships of Δβ(I C, IR, t) and β(I C, IR, t) result naturally from the simple ΔIB model. Using these relationships the device lifetime can be extrapolated over a wide range of reverse stress currents for a given technology  相似文献   

18.
The bipolar/FET characteristics of the 2DEG-HBT are analyzed extensively by a two-dimensional numerical simulator based on a drift-diffusion model. For bipolar operations at high collector current densities, it is confirmed that the cutoff frequency fT is determined mainly by the collector transit time of holes and by the charging time of the extrinsic base-collector capacitance C bcEXT. The charging times of the emitter and base regions and the base transit time are shown to be negligible. A high cutoff frequency FT (88 GHz) and current gain hFE (760) are obtained for an emitter size of 1×10 μm2, and undoped collector thickness of 150 nm, and a collector current density Jc of 105 A/cm2. The FET operation of the same 2DEG-HBT structure shows a threshold voltage Vth of 0.74 V, the transconductance Gmmax of 80 mS/mm, and maximum cutoff frequency FTmax of 15 GHz. The dependence of the device performance on material parameters is analyzed extensively from a device design point of view  相似文献   

19.
Parasitic energy barriers can easily be introduced during processing. Measurements and calculations of experimental n-p-n HBTs (heterojunction bipolar transistors) are presented, showing that a parasitic conduction-band barrier at the base-collector junction reduces the collector current and the cutoff frequency. A simple analytical model explains the fT degradation, caused by the reduction of the collector current and a pileup of minority carriers in the base. With the model the effective height and width of the barrier can also be derived from the measured collector current enhancement factor IC(SiGe)/IC(Si)  相似文献   

20.
The authors report the first co-integration of resonant tunneling and heterojunction bipolar transistors. Both transistors are produced from a single epitaxial growth by metalorganic molecular beam epitaxy, on InP substrates. The fabrication process yields 9-μm2-emitter resonant tunneling bipolar transistors (RTBTs) operating at room temperature with peak-to-valley current ratios (PVRs) in the common-emitter transistor configuration, exceeding 70, at a resonant peak current density of 10 kA/cm2, and a differential current gain at resonance of 19. The breakdown voltage of the In0.53Ga0.47As-InP base/collector junction, VCBO, is 4.2 V, which is sufficient for logic function demonstrations. Co-integrated 9-μm2-emitter double heterojunction bipolar transistors (DHBTs) with low collector/emitter offset voltage, 200 mV, and DC current gain as high as 32 are also obtained. On-wafer S-parameter measurements of the current gain cutoff frequency (fT) and the maximum frequency of oscillation (fmax) yielded f T and fmax values of 11 and 21 GHz for the RTBT and 59 and 43 GHz for the HBT, respectively  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号