首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
全氟磺酸改性聚乙烯醇渗透汽化膜分离乙酸乙酯-水溶液   总被引:1,自引:1,他引:1  
以聚乙烯醇(PVA)为原材料,全氟磺酸(PFSA)为共混改性材料,以聚丙烯腈(PAN)中空纤维超滤膜为底膜制备了PVAfPAN、PVA-PFSA/PAN复合膜,并用于乙酸乙酯脱水.考察了共混涂膜液中PVA、PFSA配比,交联剂酒石酸(Tat)用量以及原料液温度与浓度对PVA、PAN、PVA-PFSA、PAN复合膜分离件能的影响.实验结果表明,Tac交联的PVA,PAN、PVA-PFSA/PAN复合膜均对水具有较好的分离选择性.共混涂膜液中PVA/PFSA质量比为1/1、Tac/PVA质量比为l/5时所制备的PVA-PFSA/PAN复合膜渗透汽化分离性能最佳.40下℃此复合膜用于分离98%(wt)的乙酸乙酯水溶液时,其渗透通量和分离因予分别为81.1 g·m-2·h-1和1890.同样条件下,与交联PVA/PAN复合膜相比,交联PVA-PFSA/PAN复合膜的渗透通量显著提高.  相似文献   

2.
以聚乙烯醇(PVA)为原材料,全氟磺酸(PFSA)为共混改性材料,以聚丙烯腈(PAN)中空纤维超滤膜为底膜制备了PVA/PAN、PVA-PFSA/PAN复合膜,并用于乙酸乙酯脱水。考察了共混涂膜液中PVA/PFSA配比,交联剂洒石酸(Tac)用量以及原料液温度与浓度对PVA/PAN、PVA-PFSA/PAN复合膜分离性能的影响。实验结果表明,Tac交联的PVA/PAN、PVA-PFSA/PAN复合膜均对水具有较好的分离选择性。共混涂膜液中PVA/PFSA质量比为1/1、Tac/PVA质结比为1/5时所制备的PVA-PFSA/PAN复合膜渗透汽化分离性能最佳。40℃下此复合膜用于分离98%(wt)的乙酸乙酯水溶液时,其渗透通量和分离因予分别为81.1g·m^-2·h^-1和1890。同样条件下,与交联PVA/PAN复合膜相比,交联PVA-PFSA/PAN复合膜的渗透通量显著提高。  相似文献   

3.
采用溶胶–凝胶法配制了掺杂Zr4+以及未掺杂的2种有机硅态溶胶,以浸渍提拉的方式在已修饰的α-Al2O3载体上逐层涂布2种溶胶,并经过煅烧固化制备了二氧化硅复合膜。采用扫描电子显微镜对制备过程中的每一膜层表面形态结构进行表征。将二氧化硅复合膜应用于渗透汽化脱水,考察了不同温度以及不同进料含水率下的渗透汽化性能,并探究了强酸性环境(pH=2)对其性能的影响。实验结果表明:二氧化硅复合膜在75℃对85%(质量分数)异丙醇溶液渗透汽化脱水,其通量可达1 kg/(m2·h),渗透液含水率(质量分数)最高可到99.4%;在不同温度和含水率的条件下,二氧化硅复合膜都能保持良好的分离性能,具有良好的水热稳定性;长时间在强酸性环境(pH=2)中仍能保持稳定的分离性能,具有极强的耐酸性能。  相似文献   

4.
对自制聚乙烯醇(PVA)/聚丙烯腈(PAN)共混膜渗透汽化分离低浓度醋酸-水溶液体系的性能进行了研究。分别考察了操作温度、下游表压以及醋酸浓度对PVA/PAN共混膜渗透蒸发分离性能影响。结果表明,随着操作温度增大和醋酸浓度及下游压力的减小,膜的渗透通量增加,分离因子减小。在操作温度323 K、下游表压8 mm Hg的条件下,采用膜厚为45μm的PVA/PAN共混膜对90wt.%的醋酸-水体系进行渗透汽化分离,其渗透通量和分离因子分别达到3746 g·m-2·h-1和3.75。  相似文献   

5.
分离有机物水溶液的渗透汽化与汽化渗透膜   总被引:6,自引:0,他引:6  
该文基于45篇最新文献,较详细地论述了渗透汽化膜与汽化渗透膜的有机物水溶液分离性能及其影响因素,包括高聚物特征,料液浓度,温度,古游侧压力,膜厚度和操作时间,指出用多数高聚物膜进行渗透汽化操作可以有效地分离多数有机醇,酮,酸,酯,酰胺以及二E烷,乙腈,吡啶,二甲亚砜和四氢呋喃水溶液;而以壳聚糖及其衍生物膜进行汽化渗透操作则具有更高的分离系数。该文还简要介绍了渗透汽化膜的新应用。为渗透汽化与汽化渗透  相似文献   

6.
对自制改性聚乙烯醇(PVA)/聚丙烯腈(PAN)共混膜渗透汽化分离异丙醇-水溶液体系的性能进行了研究。分别考察了操作温度、下游表压以及异丙醇浓度对PVA/PAN共混膜渗透蒸发分离性能影响。结果表明,随着操作温度及异丙醇浓度的增大和下游压力的减小,膜的渗透通量增加,分离因子减小。在操作温度298 K、下游表压4k Pa的条件下,采用膜厚为42μm的PVA/PAN共混膜对90%(质量分数)的异丙醇-水体系进行渗透汽化分离,其渗透通量和分离因子分别达到1 940 g·m-2·h-1和22.2。  相似文献   

7.
采用溶胶–凝胶法配制了掺杂Zr4+以及未掺杂的2种有机硅态溶胶,以浸渍提拉的方式在已修饰的α-Al2O3载体上逐层涂布2种溶胶,并经过煅烧固化制备了二氧化硅复合膜。采用扫描电子显微镜对制备过程中的每一膜层表面形态结构进行表征。将二氧化硅复合膜应用于渗透汽化脱水,考察了不同温度以及不同进料含水率下的渗透汽化性能,并探究了强酸性环境(pH=2)对其性能的影响。实验结果表明:二氧化硅复合膜在75℃对85%(质量分数)异丙醇溶液渗透汽化脱水,其通量可达1 kg/(m2·h),渗透液含水率(质量分数)最高可到99.4%;在不同温度和含水率的条件下,二氧化硅复合膜都能保持良好的分离性能,具有良好的水热稳定性;长时间在强酸性环境(pH=2)中仍能保持稳定的分离性能,具有极强的耐酸性能。  相似文献   

8.
以TEOS(正硅酸乙酯)为前驱体、氨水为催化剂和无水乙醇为溶剂,采用溶胶-凝胶法制备了纳米二氧化硅。利用傅里叶变换红外光谱(FT-IR)仪和纳米激光粒度分布仪对纳米二氧化硅的结构、粒径及其分布进行了表征,并着重探讨了反应温度、催化剂浓度和反应时间等对纳米二氧化硅粒径的影响。研究结果表明:当反应温度为60℃、催化剂浓度为0.82 mol/L和反应时间为3~4 h时,制得的纳米二氧化硅平均粒径为300 nm左右。  相似文献   

9.
渗透汽化作为一种节能、低能耗、绿色环保的新型膜分离技术,正受到世界范围内越来越广泛的关注和研究。文中简述了渗透汽化膜技术的基本原理、工艺流程和传质模型,介绍了影响分离效果的因素及特点;分析渗透汽化技术在有机溶剂脱水、水中脱除有机物以、有机物/有机物的分离以及化学反应中的工业应用情况,并进行经济性分析,最后展望了该技术的应用前景。  相似文献   

10.
超细二氧化硅的制备和表征   总被引:4,自引:2,他引:2  
郑婧  陈晓晖 《硅酸盐通报》2008,27(6):1109-1113
本文以正硅酸乙酯为硅源,通过溶胶-凝胶法制备超细二氧化硅.考察了溶剂、温度、添加剂等因素对制备二氧化硅的影响.通过一系列的实验确定了制备超细二氧化硅较好的工艺条件:以丙酮为溶剂、氨水为催化剂、pH值为9左右、反应温度为40 ℃.并采用XRD、N2等温吸附-脱附、FT-IR、SEM等手段对二氧化硅进行表征.结果表明:所制得的二氧化硅为无定形结构,孔径分布集中在2~25 nm,BET比表面积可达200 m2/g以上.  相似文献   

11.
制备了以聚乙烯醇(PVA)与正硅酸乙酯(TEOS)交联膜为活性层,以超滤平板膜PAN为底膜的PVA-TEOS/PAN复合膜,并用于己内酰胺脱水.FT-IR和XRD谱图证实复合膜活性层中PVA与TEOS发生交联反应,形成了Si-O-C共价键,膜结晶度降低.用SEM和TGA分别对膜的形貌和热稳定性进行表征.考察了交联剂(T...  相似文献   

12.
The effect of the modification of the polyvinyl alcohol (PVA) selective layer of thin film composite (TFC) membranes by aluminosilicate (Al2O3·SiO2) nanoparticles on the structure and pervaporation performance was studied. For the first time, PVA-Al2O3·SiO2/polyacrylonitrile (PAN) thin film nanocomposite (TFN) membranes for pervaporation separation of ethanol/water mixture were developed via the formation of the selective layer in dynamic mode. Selective layers of PVA/PAN and PVA-Al2O3·SiO2/PAN membranes were formed via filtration of PVA aqueous solutions or PVA-Al2O3·SiO2 aqueous dispersions through the ultrafiltration PAN membrane for 10 min at 0.3 MPa in dead-end mode. Average particle size and zeta potential of aluminosilicate nanoparticles in PVA aqueous solution were analyzed using the dynamic light scattering technique. Structure and surface properties of membranes were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle measurements. Membrane performance was investigated in pervaporation dehydration of ethanol/water mixtures in the broad concentration range. It was found that flux of TFN membranes decreased with addition of Al2O3·SiO2 nanoparticles into the selective layer due to the increase in selective layer thickness. However, ethanol/water separation factor of TFN membranes was found to be significantly higher compared to the reference TFC membrane in the whole range of studied ethanol/water feed mixtures with different concentrations, which is attributed to the increase in membrane hydrophilicity. It was found that developed PVA-Al2O3·SiO2/PAN TFN membranes were more stable in the dehydration of ethanol in the whole range of investigated concentrations as well as at different temperatures of the feed mixtures (25 °C, 35 °C, 50 °C) compared to the reference membrane which is due to the additional cross-linking of the selective layer by formation hydrogen and donor-acceptor bonds between aluminosilicate nanoparticles and PVA macromolecules.  相似文献   

13.
《分离科学与技术》2012,47(16):2298-2307
Polyvinyl alcohol (PVOH) has been chemically modified by polymerizing hydroxyethylmethacrylate (HEMA) in aqueous solution of PVOH and finally crosslinking PVOH with glutaraldehyde to produce a semi-interpenetrating network (SIPN) membrane. Accordingly, three such SIPN membranes, namely SIPNI, SIPNII, and SIPNIII were synthesized with different weight ratio of PVOH: HEMA i.e., 1:0.25 (SIPNI), 1:0.50 (SIPNII), and 1:0.75 (SIPNIII). These SIPN membranes were used for pervaporative separation of methanol from its mixtures with toluene. The flux and methanol selectivity of these SIPN membranes were found to be much higher than conventional PVOH membrane crosslinked with glutaraldehyde. Among the three membranes, SIPNIII with 75 wt% HEMA incorporation shows optimum performance in terms of flux and methanol selectivity. The permeability of the membranes was also found to increase with increase in HEMA content in PVOH matrix. The novelty of the work lies in synthesis and characterization of a new kind of membrane and its potential for selective removal of methanol from its mixtures with toluene.  相似文献   

14.
制备了聚四氟乙烯(PTFE)超细粉体填充聚二甲基硅氧烷(PDMS)复合膜,通过扫描电子显微镜、傅里叶变换红外光谱仪、热失重分析仪等测试仪器对复合膜进行了表征,利用低浓度有机物(乙醇、丙酮、正丙醇)水溶液体系进行渗透汽化,并由单组分溶解实验计算了有机物(乙醇、丙酮、正丙醇)在复合膜中的溶解度。结果表明,PTFE含量由0增加至10 %(质量分数,下同)时, 复合膜的表面积及热稳定性得到了提高,有机物乙醇、丙酮、正丙醇在复合膜中的溶解度分别由0.0923、0.1589和0.2691 g/g提高至0.0991、0.1678和0.2773 g/g;加入PTFE后提高了复合膜的渗透汽化性能。  相似文献   

15.
采用端羟基聚丁二烯(HTPB)、端羟基聚丁二烯–苯乙烯共聚物(HTBS)和端羟基聚丁二烯–丙烯腈共聚物(HTBN)三种软段制备了聚氨酯(PUR)膜,利用红外光谱仪、差示扫描量热分析仪、热重分析仪表征了膜的结构和热性能;并以苯酚水溶液为目标体系,考察了三种膜的溶胀性以及渗透汽化分离性能。结果表明,HTPB–PUR膜具有最大的微相分离程度和耐热性;软段中的氰基会增大膜的溶胀度;HTBS–PUR膜具有最高的渗透性,而HTPB–PUR膜选择性最好;三种膜的总渗透通量、分离因子和渗透汽化分离指数均随进料温度升高而增加。  相似文献   

16.
渗透气化是一种新型的膜分离技术,因其具有独特的优势已被广泛应用于乙醇-水的分离.从渗透气化的原理和特点出发,介绍了渗透气化膜材料以及渗透气化与精馏、化学反应耦合等技术,并概述了国内外渗透气化膜分离技术在乙醇-水分离中的应用现状.  相似文献   

17.
新型渗透蒸发膜及其透醇性能研究   总被引:2,自引:0,他引:2  
采用溶液聚合法合成聚丙烯酸,并利用聚丙烯酸和环氧树脂的交联作用制备出交联聚丙烯酸(PAA),在聚砜酰胺(PSA)膜上涂膜形成PAA-PSA复合膜。发现用交联聚丙烯酸-聚砜酰胺制成的复合膜在渗透蒸发领域内具有应用价值。通过对低浓度乙醇-水的渗透蒸发的试验研究,表明该膜是一种性能较好的新型优先透醇膜。  相似文献   

18.
以工业应用的反渗透(RO)聚酰胺(PA)复合膜为支撑膜,通过组合浸涂法和界面缩聚(IP)法的两步成膜工艺,制备了分离层为交替复合的聚酰胺/聚乙烯醇/聚酰胺(PA/PVA/PA)多层复合膜(MLCM).用扫描电子显微镜(SEM)和原子力显微镜(AFM)分析了PA/PVA/PA MLCM的结构特征.结果表明,浸涂和IP的工艺条件是影响MLCM的分离性能以及微结构的主要因素.优化工艺制成的PA/PVA/PA MLCM,在实验温度20℃和下游真空度小于1000 Pa时,渗透汽化(PV)分离异丙醇(IPA)浓度为87.8%的水混合物,渗透通量(J)为60~80 g·m~(-2)·h~(-1),渗透物中水含量(CC_(p-H_2O))达99%以上.不同材料制成的多层交替复合的分离层具有显著的微结构形态和独特的双重选择性分离功能,其纳米-亚微米级厚度的多层结构强化了复合膜的水渗透性.  相似文献   

19.
渗透汽化膜技术是一种高效节能、绿色环保的新型膜分离技术,与传统分离技术相比优势显著,使该技术成为溶剂分离领域研究的焦点。简述了渗透汽化膜技术的基本原理和工艺流程,介绍了渗透汽化膜技术在有机溶剂/水体系、有机溶剂/有机溶剂体系分离的研究应用现状,展望了渗透汽化膜分离技术的研究应用前景。  相似文献   

20.
丙炔醇-丁炔二醇-水溶液的渗透汽化分离研究   总被引:1,自引:0,他引:1  
用PDMS复合膜从实际的丙炔醇-丁炔二醇-水溶液中渗透汽化分离丙炔醇。实验证明,膜渗透汽化可以实现丙炔醇的选择性分离,对水的分离因子可达3.78;丁炔二醇被膜完全截留;丙炔醇通量对温度具有敏感性,通量随着温度的增加上升得很快,丙炔醇通量在25℃时为45.28g/(m2.h),在60℃时为243.24g/(m2.h),显示了PDMS膜从这个体系中分离丙炔醇具有某种优势;对实验数据进行线性回归,证明丙炔醇通量和温度的关系可以用Arrhenius公式表征。为工业上用PDMS膜渗透汽化分离提纯丙炔醇提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号