首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在湿法炼锌工艺中,采用锑盐除钴法产出的净化钴渣经过酸性浸出后,锌、镉、钴等有价金属进入溶液,铜进入浸出渣。浸出液经过双氧水氧化除铁、低温锌粉置换除铜后,用α-亚硝基-β-萘酚的碱性溶液进行沉钴,沉钴渣经过酸洗除杂后,进行氧化焙烧而得粗Co2O4。该工艺,经济效益明显。  相似文献   

2.
高炉尘泥化学除锌   总被引:1,自引:0,他引:1  
为了降低经物理分选后的高炉精泥中锌的含量,对高炉精泥进行化学浸出除锌研究,考察浸出剂、浸出时间、温度、液固比和搅拌速度等对浸出的影响,并进行理论分析。结果表明:硫酸对锌的浸出率最高,氯化铁次之,氨水最低;在合适的浸出条件下:液固比8-1,温度20℃,硫酸浓度125 g/L,浸出时间35 min和搅拌速度150 r/min,锌浸出率为73.9%,高炉精泥中的锌含量从1.46%降低到0.38%。对硫酸浸出脱锌的动力学和反应机制的研究表明,浸出过程遵从1-2α/3-(1-α)2/3=kt,浸出反应的活化能为8.89 kJ/mol,属于扩散控制过程。  相似文献   

3.
湿法炼锌净化钴渣中富集钴的工艺研究   总被引:1,自引:0,他引:1  
在湿法炼锌工艺中,采用锑盐除钻法产出的净化钴渣经过酸性浸出后,锌、镉、钻等有价金属进入溶液,铜进入浸出渣。浸出液经过双氧水氧化除铁、低温锌粉置换除铜镉后,然后加入过硫酸钠,使溶液中的钴、铁、锰发生氧化,再用氢氧化钠溶液调整PH值在4.5~5.0之间,使溶液中的钻、铁、锰发生水解进入渣中。沉钴后液含Co≤5mg/l,避免了钴在湿法炼锌系统中的循环;钴的富集程度比较高,沉钴渣中钴的含量达到了20%以上,有利于钴的进一步精炼。  相似文献   

4.
采用分段浸出方法从锌置换渣中选择性提取锌、铅、镓和锗.首段浸出过程通过控制合适的硫酸浓度与液固比条件,锌和镓的浸出率达到90%和99%以上,超过92%的锗留在硫酸浸出渣中;二段采用盐酸作为浸出剂选择性提取铅,铅的浸出率为99%,锗损失率小于2%;三段采用1 mol/L氢氧化钠作为浸出剂,通过破坏硅锗固溶体的结构,实现锗...  相似文献   

5.
MACA体系中循环浸出低品位氧化锌矿制备电解锌   总被引:2,自引:0,他引:2  
以云南兰坪低品位氧化锌矿及其循环浸出渣的浮选精矿为原料,常温常压下在MACA(金属氨络合物)体系中进行循环浸出。浸出液先净化除砷和锑、再两段锌粉逆流置换深度净化,两次净化后液电积制取电解锌。考察工艺中循环浸出率、净化率、物质平衡以及电解锌质量和电耗等技术经济指标。结果表明:先用MACA法处理原矿粉,再浮选硫化锌的选冶结合流程是合适的兰坪低品位氧化锌矿的处理方案,原矿锌的平均浸出率为70.48%,其氨可溶锌浸出率达到89.14%,浮选精矿锌的浸出率为79.75%,杂质元素的净化率达到95%,电解锌纯度达到99.98%,电流效率可达97.02%。  相似文献   

6.
采用线性扫描伏安法研究了回用水中杂质离子对锌电解过程中Pb-Ag阳极钝化的影响。结果表明:回用水中Cl-和F-的存在将会影响电极的钝化过程。当溶液中H2SO4浓度为180g/L,即酸锌比为3.6,Mn2+浓度为3~5g/L,F-浓度小于42mg/L时有利于Pb-Ag阳极钝化;而当溶液中只存在Cl-时,Cl-浓度必须低于13mg/L才不会影响电极的钝化过程;当溶液中同时存在Mn2+和Cl-且锰氯质量比为8时,电极的钝化过程不会受到Cl-的影响,此时溶液中Cl-的含量最高,可以达到625mg/L。  相似文献   

7.
以广西大厂92号锡矿为主要原料,采用溶胶-凝胶法合成了铁酸锌光催化粉体.工艺过程为:原料粉碎球磨,用浓盐酸浸出铁,在浸出液中加入双氧水,将Fe2 氧化成Fe3 ,用浓氨水调节pH值,使Fe3 全部沉淀.用浓硝酸溶解氢氧化铁沉淀与适量的氧化锌,然后加入柠檬酸的醇溶液,混合溶液于70℃加热得到前驱体溶胶,凝胶经不同温度焙烧制得纳米铁酸锌粉体,通过对甲基橙溶液的光催化降解考察其光催化活性.利用化学全分析法、XRD、紫外-可见漫反射光谱、紫外-可见分光光度法进行表征.结果表明:通过控制适宜的酸浸工艺条件,铁的浸出率达到45.62%;经过600℃热处理3 b的铁酸锌粉体对甲基橙溶液的光催化降解效果最好.  相似文献   

8.
通过浸出实验和对浸出产物的粒度、相成分等的后续分析研究表面活性剂及其混合物对锌精矿加压浸出效果的影响。所用表面活性剂为木质素磺酸盐(Lignosulfonate, LS)和十二烷基硫酸钠(sodium dodecyl sulfate, SDS)。通过测量表面张力研究表面活性剂对人工模拟溶液表面活性的影响。结果表明,同时添加LS和SDS具有协同效应,导致表面张力降级。在一系列加压浸出实验中,研究表面活性剂及其混合物浓度(СLS/SDS=0.2~0.8 g/L)、温度(T=120~140℃)、氧分压(po2=0.5~0.7MPa)和时间(t=20~120min)等参数对溶液中锌、铁、铜和铟浸出效果的影响。根据研究结果确定的锌精矿浸出的最优参数为:СLS=0.6~0.8 g/L、СSDS=0.2~0.6 g/L、po2=0.5 MPa、T=140℃和t=100~120min。在最优条件下溶液中的锌、铟、铜和铁的浸出率分别为93%~94%、65%~66%、64%~68%和48%~49%...  相似文献   

9.
采用硫酸浸出锌冶炼含镉烟尘,得到含镉硫酸浸出液,在硫酸镉浸出液中加入双氧水和FeCl3溶液,用NaOH溶液调节pH值后过滤,将滤液加入NaOH溶液中得到Cd(OH)2粉体,采用氢气还原得到镉粉。结果表明:当硫酸浓度为110 g/L、反应温度为65℃时,镉浸出率达99.63%。双氧水用量为理论量10倍、n(Fe)/n(As)为3:1、pH=5.5时,砷的去除率达99.5%,得到净化的硫酸镉溶液。将硫酸镉溶液以缓慢加料方式加入浓度为2 mol/L的NaOH溶液中,反应温度为25℃,控制终点pH=10,过滤洗涤得到粒径为10~20μm的Cd(OH)2粉体,采用氢气还原Cd(OH)2粉体,在反应温度为310℃、反应时间120 min、氢气流量40 L/h时,得到平均粒径为49.61μm的球形镉粉。  相似文献   

10.
采用铁粉置换法处理湿法炼锌产生的锌浸渣还原浸出液,产出一种含砷铜渣,以该含砷铜渣为研究对象,利用氧压酸浸缓慢分解含砷铜渣,使其中的铜、锌等溶解进入溶液,同时,砷、铁以臭葱石的形式沉淀为浸出渣,从而将铜的浸出和砷、铁的沉淀在同一反应釜同一过程中完成,有效实现含砷铜渣中有价金属的浸出过程与杂质的沉淀过程在同一过程同步进行。结果表明:在反应温度为135℃、反应时间为4 h、液固体积质量比25 mL/g、硫酸浓度为50 g/L、氧分压500 kPa、铁砷摩尔比为1的条件下,浸出渣中铜含量仅为2.03%,浸出率达到97.72%,砷含量达到26.06%,沉淀率达到95.98%;浸出液中铜的浓度达到20.47 g/L,砷浓度小于0.63 g/L,实现了铜和砷的高效分离,提高了铜金属回收率和资源综合利用率。浸出渣中砷均以臭葱石(FeAsO4·2H2O)的形式存在,符合当前的环境友好型发展理念。  相似文献   

11.
研究热浸镀锌厂的锌灰,使之可以作为二次锌资源返回镀锌槽。这种废料中含有63%的锌,锌以金属、氧化物和羟基氯化物相存在。在各种浸出槽负荷(100~300 g/L)下于H_2SO_4溶液(20%,25%)中浸出锌灰,研究锌、锰、铁和氯离子的浸出行为。考察几种从浸出液中除铁的方法。添加絮凝剂对后续的铁沉淀物过滤有害,因为会导致溶液黏度增大;氧化锌与为了提高pH值而加入的碳酸钙结合,形成高密度的悬浊液,无法从硫酸锌溶液中分离出来。在不同的pH值(-0.5~2.8)下进行锌电积,电流密度范围为3~10 A/dm~2。从锌灰中回收纯金属的最佳条件如下:用20%的硫酸浸出,浸出槽负荷100~150 g/L,用H_2O_2和CaCO_3沉淀出Fe2O3·xH_2O,在pH 0.1~1.0、电流密度3~6 A/dm~2的条件下进行电积锌。还讨论电解液中pH与游离H_2SO_4浓度之间的关系。锌电解液的pH-酸浓度曲线介于纯H_2SO_4溶液的实验曲线与计算曲线之间;如果溶液中存在铁离子,则曲线向低pH方向移动。  相似文献   

12.
对湿法炼锌净化渣的浸出动力学进行了研究,并探讨了硫酸浓度、反应温度、粒度等对钴、锌浸出率的影响规律。从动力学的角度分析了整个浸出过程,得到优化条件:液固比50:1(mL/g),硫酸浓度100 g/L,反应温度70°C,粒度75~80μm,反应时间20 min。在此优化条件下钴的浸出率为99.8%,锌的浸出率为91.97%。结果表明:在硫酸体系中钴的浸出符合不生成固体产物层的“未反应收缩核”模型。通过 Arrhenius 经验公式求得钴和锌表观反应活化能分别为11.693 kJ/mol和6.6894 kJ/mol,这表明浸出过程受边界层扩散控制。  相似文献   

13.
高铁锌焙砂选择性还原焙烧-两段浸出锌   总被引:1,自引:0,他引:1  
采用还原焙烧将高铁锌焙砂中的铁酸锌选择性地分解为氧化锌和磁铁矿,再通过两段浸出工艺回收锌,以实现锌铁分离和获得以磁铁矿为主的浸出渣。主要考察了还原焙烧、中性浸出及低酸浸出条件对锌焙砂中锌、铁浸出率的影响。结果表明:通过还原焙烧可以显著地提高锌焙砂的锌浸出率;中性浸出的最佳条件为浸出温度60℃、液固比10:1、初始酸度45 g/L和浸出时间2 h;低酸浸出的最佳条件为浸出温度70℃、液固比10:1、初始酸度60 g/L、搅拌速度300 r/min和浸出时间2 h。在最佳条件下,两段浸出的总锌浸出率约为90%,总铁浸出率约为5%。经XRD和SEM/EDS分析,浸出渣以磁铁矿为主,其次是闪锌矿和铁酸锌;铁酸锌存在的主要原因是在还原焙烧过程中被氧化锌等矿物包裹,使其分解不充分。  相似文献   

14.
针对锌精矿氧压酸浸过程受多相传质影响导致氧化能力不足的问题,本文利用锌浸出渣中可溶性Fe(Ⅲ)的强氧化性促进锌精矿中低价硫化物的高效溶解,同时实现铁酸锌、金属硫化物的强化解离和铁的清洁分离。结果表明:锌浸出渣中铁酸锌溶解产生的Fe(Ⅲ)可以提高体系氧化还原电位,强化锌精矿浸出;以添加锌浸出渣形式向系统补充6.1g/L Fe(Ⅲ)后,锌浸出率由87.59%升高到98.82%;升高反应温度、提高氧分压将有助于提升Fe(Ⅲ)、Fe(Ⅱ)的氧化还原反应能力,同时促进锌的高效浸出和Fe(Ⅲ)的矿物化沉淀;提高酸度可以加快锌精矿的溶解速率,但酸度过高将抑制Fe(Ⅲ)矿物化水解沉淀。在初始Fe(Ⅲ)为6.1 g/L、初始酸度95 g/L、反应温度160℃、氧分压0.8 MPa、液固比6 mL∶1 g、搅拌转速800 r/min、反应时间120min的优化技术条件下,锌浸出率为98.82%,同时溶液中92.36%的铁以铁矾的形式沉淀入渣,浸出终渣含黄钾铁矾40.2%、铅铁矾14.6%;浸出液含铁低至1.04 g/L。  相似文献   

15.
研究硅酸锌在氯化铵溶液中的浸出动力学,讨论搅拌速度(150~400 r/min)、浸出温度(95~108°C)、硅酸锌粒度(61~150μm)以及氯化铵浓度(3.5~5.5 mol/L)对锌浸出率的影响。结果表明,减小硅酸锌粒度、提高浸出温度和氯化铵浓度可以显著地提高锌的浸出率。在多孔颗粒的动力学模型中,颗粒模型的孔隙扩散控制能很好地描述锌的浸出动力学。浸出反应的表观活化能为161.26 k J/mol,氯化铵的反应级数为3.5.  相似文献   

16.
锌系磷化废水去锌除磷的研究   总被引:1,自引:0,他引:1  
以Fe3(SO4)2和CaCl2为沉淀剂处理磷化废水,研究废水中锌对磷化溶液化学特性的影响。结果表明,当进水TP(总磷)浓度为15.67mg/L,不加任何沉淀剂,以NaOH调节pH到12.10,处理后出水磷浓度为9.53mg/L;采用Fe3(SO4)2为沉淀剂时,进水磷浓度为11.97mg/L,出水磷浓度为0.44~O.26mg/L,除磷的最佳pH范围为3.04~5.50;改用CaCl2沉淀剂,进水磷浓度为12.24mg/L,出水磷浓度小于0.47mg/L,除磷的pH大于10.72,除锌pH大于8.00,因此在碱性条件下,能同时达到除磷和除锌的要求,处理后出水达标排放。  相似文献   

17.
针对锌置换渣中有价金属元素种类多、物相组成复杂的特点,本研究提出采用一段常压-二段氧压浸出的方法高效浸出锌置换渣中的有价金属。采用XRD和SEM-EDS对浸出渣物相以及形貌进行了分析。结果表明:在硫酸浓度1.5 mol/L、温度80℃、液固比7.5 mL/g、浸出时间3 h的条件下,常压浸出过程中Cu、Zn、Cd、Fe、Ni、Ga和Ge的浸出率分别为97.48%、99.43%、99.82%、97.21%、98.97%、97.74%、82.46%。对常压浸出渣进行二段氧压浸出,在氧气分压0.6 MPa以及硫酸浓度为0.25 mol/L条件下,Cu和Ge的浸出率可进一步分别提高至99.87%和91.66%。通过两段浸出,原来在置换渣中存在的Cu、Zn、Fe等物相消失,浸出渣主要由Pb和Si组成;铅的主要物相为PbSO4,Si以粒径较小的聚合硅胶颗粒和块状SiO2颗粒形式存在;聚合硅胶颗粒和块状SiO2颗粒中Ge含量较高,对Ge的浸出造成不利影响。  相似文献   

18.
以锌冶炼中浸渣为研究对象,研究中浸渣的化学成分及锌的存在形态,锌主要以铁酸锌形式存在。采用SO2做还原剂,研究温度、初始硫酸浓度、二氧化硫分压对锌浸出效率的影响,并分析中浸渣中锌还原浸出反应机制及动力学。结果表明:H+在锌还原浸出过程中起关键作用,锌还原浸出反应活化能为31.67 k J/mol,为化学反应控制;SO2做还原剂时,反应时间、液固比及初始酸度均大幅降低。反应最佳工艺条件:初始硫酸浓度80 g/L、温度95℃、液固比(L/S)10 m L/g、二氧化硫分压200 k Pa、反应时间120 min。该工艺条件下,中浸渣中锌浸出率达99%以上。XRD和ICP分析表明:中浸渣中铁酸锌分解,硫化锌在该反应条件下未完全浸出,还原浸出渣中主要化学成分为铅和锌,主要物相为Pb SO4和Zn S。  相似文献   

19.
针对锌含量较高的高炉瓦斯灰无法直接返回炼铁流程循环使用的问题,采用氨-碳酸铵为浸出剂浸出含锌高炉瓦斯灰中的锌,实现了锌的脱除和高炉瓦斯灰的资源化利用。热力学计算和锌氨配位原理分析表明,通过锌氨配位浸出实现含锌瓦斯灰中锌的脱除是可行的。结果表明,最佳反应条件为氨水浓度2 mol/L、碳酸铵浓度2mol/L、温度50℃、液固比6:1、浸出时间3 h;在此条件下,锌浸出率为91%,铁的浸出率为1.15%,高炉瓦斯灰中的锌含量从9.54%降低到1.13%,铁含量由35.9%富集至47.6%。原料和终渣的物相分析表明,原料中以氧化物和硫酸盐形式存在的锌溶解浸出,终渣中残留的锌主要赋存于难溶解的锌铁尖晶石物相中,这是锌浸出率难以进一步提高的主要原因。SEM-EDS检测表明,终渣颗粒分布不均匀,表面疏松多孔,有利于高炉瓦斯灰的后续处理。  相似文献   

20.
以西南某锌厂的锌浸出渣的浮选银锌精矿为原料提出了综合回收湿法炼锌的银锌精矿中银、硫、锌的新工艺,确定了工艺参数,通过小型实验验证了工艺的可行性.该工艺分为:混酸氧化浸出、渣水浸、银浸出三步.最佳条件下锌总浸出率按液计99.8%,银总浸出率按液计87.3%,硫富集于渣中,情况较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号