首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 522 毫秒
1.
The ENEA photon dosemeter, introduced in 1995, consisting of two differently filtrated LiF(Mg,Cu,P) detectors, has been modified recently. The ABS (acrylonitrile butadiene styrene) plastic support has been replaced by a new aluminium card supporting the same two detectors (LiF(Mg,Cu,P) GR200). The new card, fully developed at the ENEA-Radiation Protection Institute (which is going to be patented), can now be processed through a Harshaw Model 6600 Automated TLD Reader, a hot gas reader. This paper reports the results of the individual calibration of approximately 60,000 LiF(Mg,Cu,P) GR200 detectors inserted on the new aluminium cards. Before the implementation in routine of the new cards, the reader has been characterised. Steps and tests to be made to use the card in routine (i.e. reader stability, linearity, reproducibility, etc.) are reported. The whole dosimetric system now combines the very good performances of the Harshaw Model 6600 reader and that of LiF(Mg,Cu,P) thermoluminescent material.  相似文献   

2.
Recently, two new types of 'tissue equivalent' thermoluminescent detectors (TLDs) have aroused attention: LiF:Mg,Cu,Na,Si and Li2B4O7:Cu,Ag,P. In this work the characteristics of both detectors were compared with the characteristics of the well-known type LiF:Mg,Ti detector, TLD-100. The following properties were investigated: the glow curve structures, relative sensitivity, batch homogeneity and uniformity, detection threshold, reproducibility of the response, linearity in the wide dose range and fading. Also, the energy dependence for medium and low energy X rays was determined in the range of mean energies between 33 and 116 keV. The results confirmed 'tissue equivalency' of both new types in the investigated range of photon energies. LiF:Mg,Cu,Na,Si detector has very high sensitivity (approximately 75 times higher than that of TLD-100) and is convenient for use in a very low range of doses. Li2B4O7:Cu,Ag,P detector shows some improvements in comparison with the previously prepared types of lithium borate. The most important is the five times higher sensitivity than that of TLD-100. This detector is also very promising, especially in medical dosimetry.  相似文献   

3.
One of the advantages of LiF based thermoluminescent (TL) materials is its tissue-equivalent property. The Harshaw TLD-100H (LiF:Mg,Cu,P) material has demonstrated that it has a near-flat photon energy response and high sensitivity. With the optimized dosemeter filters built into the holder, the Harshaw TLD-100H two-element dosemeter can be used as a whole body personnel dosemeter for gamma, X ray and beta monitoring without the use of an algorithm or correction factor. This paper presents the dose performance of the Harshaw TLD-100H two-element dosemeter against the ANSI N13.11-2001 standard and the results of tests that are required in IEC 1066 International Standard.  相似文献   

4.
Measurements of weakly penetrating radiation in personal dosimetry present problems in the design of suitable detectors and in the interpretation of their readings. For the measurement of the individual beta radiation dose, personal dosemeters for the fingers/tips are required. LiF:Mg,Cu,P is a promising thermoluminescent (TL) material which allows the production of thin detectors with sufficient sensitivity. Dosimetric properties of two different types of extremity dosemeters, designed to measure the personal dose equivalent Hp(0.07), have been compared: LiF:Mg,Ti (TLD100) and LiF:Mg,Cu,P (TLD700H). A type test for energy response for photon and beta radiation according to ISO 4037-3 and ISO-6980 was carried out and the results for both dosemeters were compared. Simultaneous measurements with both types of dosemeters were performed at workplaces, where radiopharmaceuticals containing different radioisotopes are prepared and applied. Practices in these fields are characterized by handling of high activities at very small distances between source and skin. The results from the comparison of the two-dosemeter types are presented and analysed with respect to different radiation fields. Experiments showed a satisfactory sensitivity for the thinner dosemeter (TLD 700H) for detecting beta radiation at protection levels and a good energy response.  相似文献   

5.
The Hp(10) energy response of the personal dosemeter Seibersdorf and its two different filtered LiF:Mg,Ti (TLD-100) thermoluminescence (TL) detectors are investigated. A close-to-reality simulation model of the personal dosemeter badge including the wrapped detector card was implemented with the MCNP Monte Carlo N-particle transport code. The comparison of measured and computationally calculated response using a semi-empirical TL efficiency function is carried out to provide information about the quality of the results of both methods, experiment and simulation. Similar to the experimental calibration conditions, the irradiation of dosemeters centred on the front surface of the International Organization for Standardization (ISO) water slab phantom is simulated using ISO-4037 reference photon radiation qualities with mean energies between 24 keV and 1.25 MeV and corresponding ISO conversion coefficients. The comparison of the simulated and measured relative Hp(10) energy responses resulted in good agreement within some percent except for the filtered TL element at lower photon energies.  相似文献   

6.
The aim of this work was to determine important dosimetric characteristics of several types of the most interesting tissue-equivalent thermoluminescent detectors (TLDs). Special attention was given to the determination of energy dependence for medium and low energy X rays. The following types of TLDs were investigated: (a) two new types based on lithium borate: Li2B4O7:Cu,In and Li,B4O7:Cu,In,Ag; (b) two types of the recently developed highly sensitive LiF:Mg,Cu,P material: TLD-700H and GR 200A and (c) two well known types of LiF:Mg,Ti detectors: TLD-100 and TLD-700. In order to determine their photon energy response characteristics, TLDs previously calibrated with 137Cs gamma rays were simultaneously irradiated with X ray beams in the range of effective energies between 33 and 116 keV. Measured energy responses (relative to air), normalised to those to 137Cs photons were compared with calculated data. Although the deviations of the measured data from the 'theoretical' predictions are different for all the investigated TLDs, there is no large difference in 'tissue-equivalency' between them.  相似文献   

7.
Energy response of LiF:Mg,Ti, LiF:Mg,Cu,P and Mg2SiO4:Tb thermoluminescence dosemeters (TLDs) was measured in the range 10-150 keV for monoenergetic photons at SPring-8 of an 8-GeV synchrotron radiation facility. The photon beam was monitored by a parallel-plate free-air ionisation chamber calibrated with an uncertainty of 3%. Owing to the small dimension of the beam, a rotating holder was designed in order to irradiate TLDs uniformly. The measured responses of LiF to energy were approximately in agreement with the calculated dose absorption dependence in the soft tissue. However, two types of LiF TLDs presented the different luminescent responses to the photon energy. The response of LiF:Mg,Ti had a smooth curve, and that of LiF:Mg,Cu,P presented a local maximum at 30 keV and a local minimum at 100 keV. The Mg2SiO4:Tb response was nearly bone equivalent. Linearity of dose responses was also confirmed up to 2 Gy on each TL material.  相似文献   

8.
The simulation of response of a new passive area dosemeter for measuring ambient dose equivalent H*(10) for photons has been performed using the Monte Carlo code MCNP and experimentally determined responses of LiF:Mg,Ti and LiF:Mg,Cu,P thermoluminescent (TL) detectors for hard-filtered X-ray spectra from 20 to 300 keV and for 137Cs and 60Co gamma radiation. Relative TL efficiency for both types of detectors, determined in experiments with bare detectors and similar Monte Carlo simulations, compared favourably with prediction of microdosimetric models for proposed microdosimetric target sizes in the range of 20-40 nm. The concluding verification experiment showed small deviations between measured and simulated dosemeter energy response values in the range of a few percent.  相似文献   

9.
Measurements of the response of thermoluminescent (TL) detectors after gamma ray doses high enough to observe signal saturation provide input to microdosimetric models which relate this gamma-ray response with the energy response after low doses of photons (gamma rays and low-energy X rays) and after high-LET irradiation. To measure their gamma ray response up to saturation, LiF:Mg,Ti (MTS-7 and MTT), LiF:Mg,Cu,P (MCP-7), CaSO4:Dy (KCD) and Al2O3:C detectors were irradiated with 60Co gamma rays over the range 1-5000 Gy. The X-ray photon energy response and TL efficiency (relative to gamma rays) after doses of beta rays and alpha particles, were also measured, for CaSO4:Dy and for Al2O3:C. Microdosimetric and track structure modelling was then applied to the experimental data. In a manner similar to LiF:Mg,Cu,P, the experimentally observed under response of alpha-Al2O3:C to X rays <100 keV, compared with cross-section calculations, is explained as a microdosimetric effect caused by the saturation of response of this detector without prior supralinearity (saturation of traps along the tracks). The enhanced X-ray photon energy response of CaSO4:Dy is related to the supralinearity observed in this material after high gamma ray doses, similarly to that in LiF:Mg,Ti. The discussed model approaches support the general rule relating dose-, energy- and ionisation density-responses in TL detectors: if their gamma ray response is sublinear prior to saturation, the measured photon energy response is lower, and if it is supralinear, it may be higher than that expected from the calculation of the interaction cross sections alone. Since similar rules have been found to apply to other solid-state detector systems, microdosimetry may offer a valuable contribution to solid-state dosimetry even prior to mechanistic explanations of physical phenomena in different TL detectors.  相似文献   

10.
An extension of dosemeter issue period brings significant economic and logistic benefits. Therefore, it is desirable to have an extended period as long as possible without significant loss of the quality of dose measurements. There are many studies devoted to the investigation of fading or reduction of the dose accumulated in dosemeters with time. However, this is one of many critical factors that need's to be taken into account when extending the dosemeter issue period. Background radiation is also a critical factor that needs to be appropriately accounted. In this report, a new approach has been suggested for evaluating the effect of background radiation on the lower limit of detection (LLD) of occupational radiation dose. This approach is based on the data collected from control dosemeters that are routinely used for subtraction of background radiation from occupational dose measurements. The results show that for LiF:Mg,Cu,P thermoluminescence dosemeters, variations in background radiation have a higher impact on the LLD than dose fading and the absolute value of background radiation. Although there is no significant dose fading in LiF:Mg,Cu,P for a dosemeter issue period up to 1 y, variations in background radiation during this period of time can significantly increase photon LLDs (up to 700 microSv) for workers operating in an environment of variable radiation background.  相似文献   

11.
The characteristics of thermoluminescence dosemeters (TLDs) regarding the determination of photon and neutron absorbed doses were investigated in a thermal neutron beam. Harshaw TLD-100 (LiF:Mg,Ti) and TLD-700 (7LiF:Mg,Ti) were compared with similar materials from Solid Dosimetric Detector and Method Laboratory (People's Republic of China). Harshaw TLD-700H (7LiF:Mg,Cu,P) and aluminium oxide (Al2O3:Mg,Y) from Hungary were also considered for photon dose measurement. The neutron sensitivity of the investigated materials was measured and found to be consistent with values reported by other authors. A comparison was made between the TL dose measurements and results obtained via conventional methods. An agreement within 20% was obtained, which demonstrates the ability of TLD for measuring neutron and photon doses in a mixed field, using careful calibration procedures and determining the neutron sensitivity for the usage conditions.  相似文献   

12.
The thermoluminescence (TL) detector material LiF:Mg,Ti (TLD-100) and appropriate filter materials were combined in order to design a passive dosemeter measuring the operational quantity ambient dose equivalent, H*(10), for monitoring low-dose external photon radiation fields. Using the Monte Carlo simulation technique, optimisations of energy dependent conversion coefficients from air kerma free-in-air compared to ICRU and ISO proposed values. h*K(10), were performed by varying dosemeter detector positioning. geometrical arrangements, and filter materials. Deviations smaller than 5% compared to h*K(10) between 30 keV and 2.5 MeV of primary photon energies were achieved by a dosemeter design consisting of a 15 microm Sn metal layer and a 5 mm PMMA layer surrounding the LiF detector. Subsequently performed free-air verification experiments carried out in well defined standard photon radiation fields showed an obviously TL-specific effect. An underestimation up to -15% of the modelled data at low photon energies was observed.  相似文献   

13.
A new type of extremity dosemeter, which incorporates the Harshaw TLD EXTRAD dosemeter element into a PVC finger stall, has been developed. The dosemeter uses high-sensitivity lithium fluoride, (7)LiF:Mg,Cu,P (TLD-700H) in a thin 7 mg cm(-2) layer, with alternative coverings of PVC at 10 mg cm(-2) and aluminised polyester at 3.2 mg cm(-2). Results are presented of the type testing of both versions of the finger stall dosemeter against published standards.  相似文献   

14.
Evaluation of a new extremity dosemeter is presented. The dosemeter is a passive device that is easy to wear and features a permanent individual numerical ID with barcode, a watertight case, an automatic TLD reader and database management software. Two dosemeters were studied: the first consists of a 100 mg x cm(-2) 7LiF:Mg,Ti (TLD-700) chip and a 42 mg x cm(-2) cap, the other consists of a 7 mg x cm(-2) layer of 7LiF:Mg,Cu,P (TLD-700H) powder and a 5 mg x cm(-2) cap. Sensitivity, repeatability, lower limit detection, angular responses and energy responses for these dosemeters are studied and presented. The dose calculation algorithm is developed and its dosimetric performance accuracy is compared with the standard ANSI N13.32-1995, Performance Testing of Extremity Dosemeters.  相似文献   

15.
In this paper, the results aimed at assessing the performance of two varieties of LiF detectors (LiF:Mg,Ti and LiF:Mg,Cu,P) in photon fields relatively to reproducibility, detection threshold and angular dependence as defined in the ISO 12794 standard are presented. The fading properties and the limit of detection were also investigated for both materials. The results suggest that both LiF varieties are well suited for extremity monitoring. However, better fading properties of LiF:Mg,Cu,P when compared with LiF:Mg,Ti, combined with previous results relatively to energy dependence suggests that LiF:Mg,Cu,P dosemeters are better suited for extremity monitoring.  相似文献   

16.
LiF:Mg,Cu,P is starting to replace LiF:Mg,Ti in a variety of personnel dosimetry applications. LiF:Mg,Cu,P has superior characteristics as compared to LiF:Mg,Ti including, higher sensitivity, improved energy response for photons, lack of supralinearity and insignificant fading. The use of LiF:Mg,Cu,P in large scale dosimetry programs is of particular interest due to the extreme sensitivity of this material to the maximum readout temperature, and the variety of different dosimetry aspects and details that must be considered for a successful implementation in routine dosimetry. Here we discuss and explain the various aspects of large scale LiF:Mg,Cu,P based dosimetry programs including the properties of the TL material, new generation of TLD readers, calibration methodologies, a new generation of dose calculation algorithms based on the use of artificial neural networks and the overall uncertainty of the dose measurement. The United States Navy (USN) will be the first US dosimetry processor who will use this new material for routine applications. Until June 2002, the Navy used two types of thermoluminescent materials for personnel dosimetry, CaF2:Mn and LiF:Mg,Ti. A program to upgrade the system and to implement LiF:Mg,Cu,P, started in the mid 1990s and was recently concluded. In 2002, the new system replaced the LiF:Mg,Ti and is scheduled to start replacing the CaF2:Mn system in 2006. A pilot study to determine the dosimetric performance of the new LiF:Mg,Cu,P based dosimetry system was recently completed, and the results show the new system to be as good or better than the current system in all areas tested. As a result, LiF:Mg,Cu,P is scheduled to become the primary personnel dosimeter for the entire US Navy in 2006.  相似文献   

17.
Although, at present, neither Italian legislation nor technical protocols require that personal dosimetry is performed to assess Hp(d), the ENEA Individual Monitoring Service (IMS) is able to supply thermoluminescence (TL) whole-body and extremity dosemeters for photon and beta fields, based on LiF(Mg,Cu,P) detectors and these have been fully developed at the ENEA Institute for Radiation Protection (IRP). All irradiation tests have been performed with ISO phantoms and ISO recommended reference radiations at the ENEA-IRP Secondary Standard Dosimetry Laboratory. The whole-body dosemeter contains two LiF(Mg,Cu,P) (GR200) detectors that are filtered differently. One is filtered on both sides by 290 mg.cm-2 mass per area (270 mg.cm-2 Al + 20 mg.cm-2 plastic protective layer); the other is filtered on both sides by a plastic layer of 20 mg.cm-2 mass per area. In photon radiation fields, the maximum uncertainty due to the energy dependence of the response, is +/- 4% for Hp(0.07) in the energy range 13 keV to 202 keV, and +/- 15% for Hp(10) in the range 13 keV to 1.25 MeV. The dosemeter response in terms of Hp(d,alpha) in beta fields has been investigated recently. The results of a EURADOS trial performance test for photon and beta fields are reported and discussed in this paper. The extremity dosemeter currently used at ENEA IMS consists of a GR200 detector glued on a kapton strip identified by a bar code. Its response in terms of Hp(0.07,alpha) has been measured recently and the results are given. Moreover, different dosemeter assemblies have been tested to compare the performances in photon and beta fields. Therefore, the following three constructions have been prepared: (1) an MCP-Ns (8.5 mg.cm-2 mass per area) detector with a Mylar filter of 0.5 mg.cm-2 mass per area; (2) a polyethylene filter of 12 mg.cm-2 mass per area; and (3) a GR200 (210 mg.cm-2 mass per area) detector with a Mylar filter of 0.5 mg.cm-2. Finally, a brief discussion on international and Italian requirements for personal monitoring is given.  相似文献   

18.
Sintered LiF:Mg,Cu,Na,Si thermoluminescence (TL) pellets have been developed for application in radiation dosimetry. LiF:M,Cu,Na,Si TL pellets were made from TL powders using a sintering process, that is, pressing and heat treatment. These pellets have a diameter of 4.5 mm, and a thickness of 0.8 mm are blue in colour and have a mass of 28 mg each. After 400 pellets had been produced they were irradiated with 137Cs gamma radiation and samples having a sensitivity within a +/-5% standard deviation were selected for experimental use. In the present study, the physical and dosimetric properties of LiF:Mg,Cu,Na,Si TL pellets were investigated for their emission spectrum, dose response, energy response and fading characteristics. Photon irradiation for the experiments was carried out using X ray beams and a 137Cs gamma source at the Korea Atomic Energy Research Institute (KAERI). The average energies and the dose were in the range of 20-662 keV and 10(-6) - 10(2) Gy respectively. The glow curves were measured with a manual type thermoluminescence dosimetry reader (system 310, Teledyne) at a constant nitrogen flux and a linear heating rate. For a constant heating rate of 5 degrees C.s(-1). the main dosimetric peak of the glow curve appeared at 234 degrees C, its activation energy was 2.34 eV and the frequency factor was 1.00 x 10(23). The TL emission spectrum appeared at the blue region centred at 410 nm. A linearity of photon dose response was maintained up to 100 Gy. The photon energy responses relative to the 137Cs response were within +/-20% in the overall photon energy region. No fading of the TL sensitivity of the pellets stored at room temperature was found over the course of a year. Therefore LiF:Mg,Cu,Na,Si TL pellets can be used for personal dosimetry, but more research is needed to improve the characteristics for repeated use.  相似文献   

19.
Differences and similarities between LiF-based LiF:Mg,Ti and LiF:Mg,Cu,P are discussed, with respect to their dosimetric properties--sensitivity, non-linearity of dose response and heavy charged particle efficiency, as related to the concentration and the individual role of the Mg, Ti, Cu and P dopants. To study further the role of these dopants, the properties of some new, 'hybrid' phosphors: LiF:Mg,Cu,Ti and LiF:Mg,P, specially developed for this purpose, are also discussed. In the glow curve of LiF:Mg,Cu,P with a low concentration of Mg a new peak was found, which appears to be an analogue of peak 4 in LiF:Mg,Ti, Magnesium apparently controls most of the dosimetric properties of LiF-based phosphors. For instance, charged-particle efficiency appears to be anti-correlated with the concentration of Mg, being much less dependent on the content of other dopants. On the other hand, some properties of LiF-based systems seem to be correlated with changes in the emission spectra. It is suggested that Ti hampers the acceptance of any increased amount of Mg into more traps in LiF:MgTi. The absence of Ti, not the presence of P or Cu, is therefore a key to the high sensitivity of LiF:MgCuP.  相似文献   

20.
The UK Health Protection Agency is currently commissioning a new personal dosimetry system based on the use of Harshaw two-element thermoluminescent dosemeter cards using LiF:Mg,Cu,P. Results of extensive type testing carried out with reference to IEC 61066, "Thermoluminescence Dosimetry Systems for Personal and Environmental Monitoring", have been presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号