首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Air pollution-related particulate matter (PM) exposure reportedly enhances allergic airway inflammation. Some studies have shown an association between PM exposure and a risk for allergic rhinitis (AR). However, the effect of PM for AR is not fully understood. An AR mouse model was developed by intranasal administration of 100 μg/mouse PM with a less than or equal to 2.5 μm in aerodynamic diameter (PM2.5) solution, and then by intraperitoneal injection of ovalbumin (OVA) with alum and intranasal challenging with 10 mg/mL OVA. The effects of PM2.5 on oxidative stress and inflammatory response via the Nrf2/NF-κB signaling pathway in mice with or without AR indicating by histological, serum, and protein analyses were examined. PM2.5 administration enhanced allergic inflammatory cell expression in the nasal mucosa through increasing the expression of inflammatory cytokine and reducing the release of Treg cytokine in OVA-induced AR mice, although PM2.5 exposure itself induced neither allergic responses nor damage to nasal and lung tissues. Notably, repeated OVA-immunization markedly impaired the nasal mucosa in the septum region. Moreover, AR with PM2.5 exposure reinforced this impairment in OVA-induced AR mice. Long-term PM2.5 exposure strengthened allergic reactions by inducing the oxidative through malondialdehyde production. The present study also provided evidence, for the first time, that activity of the Nrf2 signaling pathway is inhibited in PM2.5 exposed AR mice. Furthermore, PM2.5 exposure increased the histopathological changes of nasal and lung tissues and related the inflammatory cytokine, and clearly enhanced PM2.5 phagocytosis by alveolar macrophages via activating the NF-κB signaling pathway. These obtained results suggest that AR patients may experience exacerbation of allergic responses in areas with prolonged PM2.5 exposure.  相似文献   

2.
Oxidative stress is considered as a major risk factor that contributes to increased lipid peroxidation and declined antioxidants in some degenerative diseases. Glycyrrhizin is widely used to cure allergic diseases due to its medicinal properties. In the present study, we evaluated the role of glycyrrhizin on lipid peroxidation and antioxidant status in the blood and nasal mucosa of allergic rhinitis (AR) mice. Mice were divided into six groups: normal control mice, model control (MC) mice, three glycyrrhizin-treated mice groups and lycopene-treated mice. Sensitization-associated increase in lipid peroxidation was observed in the blood and nasal mucosa of MC mice. Activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), total antioxidant capacity (TAOC) and levels of glutathione (GSH) were found to be significantly decreased in the blood and nasal mucosa in MC mice when compared to normal control mice. However, normalized lipid peroxidation and antioxidant defenses were reported in the glycyrrhizin-treated and lycopene-treated mice. Moreover, glycyrrhizin treatment still enhanced IFN-γ and reduced IL-4 levels in glycyrrhizin-treated mice. These findings demonstrated that glycyrrhizin treatment enhanced the antioxidant status and decreased the incidence of free radical-induced lipid peroxidation and improved immunity activities in the blood and nasal mucosa of AR mice.  相似文献   

3.
Epidemiological and clinical studies have suggested that intake of n-3 polyunsaturated fatty acids (PUFA) reduces the incidence of allergic airway diseases and improves pulmonary function in patients with allergic asthma. However, the pharmacological targets of PUFA have not been elucidated upon. We investigated whether free fatty acid receptor 4 (FFA4, also known as GPR120) is a molecular target for beneficial PUFA in asthma therapy. In an ovalbumin (OVA)-induced allergic asthma model, compound A (a selective agonist of FFA4) was administrated before OVA sensitization or OVA challenge in FFA4 wild-type (WT) and knock-out (KO) mice. Compound A treatment of RBL-2H3 cells suppressed mast cell degranulation in vitro in a concentration-dependent manner. Administration of compound A suppressed in vivo allergic characteristics in bronchoalveolar lavage fluid (BALF) and lungs, such as inflammatory cytokine levels and eosinophil accumulation in BALF, inflammation and mucin secretion in the lungs. Compound A-induced suppression was not only observed in mice treated with compound A before OVA challenge, but in mice treated before OVA sensitization as well, implying that compound A acts on mast cells as well as dendritic cells. Furthermore, this suppression by compound A was only observed in FFA4-WT mice and was absent in FFA4-KO mice, implying that compound A action is mediated through FFA4. Activation of FFA4 may be a therapeutic target of PUFA in allergic asthma by suppressing the activation of dendritic cells and mast cells, suggesting that highly potent specific agonists of FFA4 could be a novel therapy for allergic asthma.  相似文献   

4.
Functional abdominal bloating and distension (FABD) are common and frequent symptoms in patients with pre-existing gastrointestinal (GI) disorders. FABD is characterized by recurrent abdominal fullness and bloating. The pathophysiology of FABD is still unclear. However, the plausible mechanisms involved are small intestinal bacterial overgrowth (SIBO), imbalance of gut microbiota, visceral hypersensitivity, intestinal permeability alteration, and disruption of intestinal barrier function. Thus, the creation of a barrier on the wall of the intestine could represent an alternative therapeutic strategy to prevent FABD. This study aimed to investigate the effect of two natural substances, Xyloglucan (XG) and Pea-protein (PP), known for their mucosal-protective properties, in an in vivo model of Partial restraint-stress (PRS). Our results showed that the pre-treatment with a product containing XG and PP in stressed-rats was able to reduce the number of abdominal contractions and visceral hypersensitivity. Moreover, XG and PP were able to reduce intestinal permeability alteration, restoring tight-junctions (TJs) expression and decreased the lactulose–mannitol ratio, a quantitative marker used to measure intestinal permeability, compared to PRS-group. In conclusion, the data obtained revealed that the product containing XG and PP was able to restore the normal intestinal-barrier function; therefore, it could be considered a therapeutic strategy to manage FABD.  相似文献   

5.
In this study we assessed the effects of antigen exposure in mice pre-sensitized with allergen following viral infection on changes in lung function, cellular responses and tight junction expression. Female BALB/c mice were sensitized to ovalbumin and infected with influenza A before receiving a second ovalbumin sensitization and challenge with saline, ovalbumin (OVA) or house dust mite (HDM). Fifteen days post-infection, bronchoalveolar inflammation, serum antibodies, responsiveness to methacholine and barrier integrity were assessed. There was no effect of infection alone on bronchoalveolar lavage cellular inflammation 15 days post-infection; however, OVA or HDM challenge resulted in increased bronchoalveolar inflammation dominated by eosinophils/neutrophils or neutrophils, respectively. Previously infected mice had higher serum OVA-specific IgE compared with uninfected mice. Mice previously infected, sensitized and challenged with OVA were most responsive to methacholine with respect to airway resistance, while HDM challenge caused significant increases in both tissue damping and tissue elastance regardless of previous infection status. Previous influenza infection was associated with decreased claudin-1 expression in all groups and decreased occludin expression in OVA or HDM-challenged mice. This study demonstrates the importance of the respiratory epithelium in pre-sensitized individuals, where influenza-infection-induced barrier disruption resulted in increased systemic OVA sensitization and downstream effects on lung function.  相似文献   

6.
With the increase in use of nanomaterials, there is growing concern regarding their potential health risks. However, few studies have assessed the role of the different physical characteristics of nanomaterials in allergic responses. Here, we examined whether intranasally administered silica particles of various sizes have the capacity to promote allergic immune responses in mice. We used nanosilica particles with diameters of 30 or 70 nm (nSP30 or nSP70, respectively), and conventional micro-sized silica particles with diameters of 300 or 1000 nm (nSP300 or mSP1000, respectively). Mice were intranasally exposed to ovalbumin (OVA) plus each silica particle, and the levels of OVA-specific antibodies (Abs) in the plasma were determined. Intranasal exposure to OVA plus smaller nanosilica particles tended to induce a higher level of OVA-specific immunoglobulin (Ig) E, IgG and IgG1 Abs than did exposure to OVA plus larger silica particles. Splenocytes from mice exposed to OVA plus nSP30 secreted higher levels of Th2-type cytokines than mice exposed to OVA alone. Taken together, these results indicate that nanosilica particles can induce allergen-specific Th2-type allergic immune responses in vivo. This study provides the foundations for the establishment of safe and effective forms of nanosilica particles.  相似文献   

7.
The nasal epithelium is a key portal for infection by respiratory viruses such as SARS-CoV-2 and represents an important target for prophylactic and therapeutic interventions. In the present study, we test the safety and efficacy of a newly developed nasal spray (AM-301, marketed as Bentrio) against infection by SARS-CoV-2 and its Delta variant on an in vitro 3D-model of the primary human nasal airway epithelium. Safety was assessed in assays for tight junction integrity, cytotoxicity and cilia beating frequency. Efficacy against SARS-CoV-2 infection was evaluated in pre-viral load and post-viral load application on airway epithelium. No toxic effects of AM-301 on the nasal epithelium were found. Prophylactic treatment with AM-301 significantly reduced viral titer vs. controls over 4 days, reaching a maximum reduction of 99% in case of infection from the wild-type SARS-CoV-2 variant and more than 83% in case of the Delta variant. When AM-301 administration was started 24 h after infection, viral titer was reduced by about 12-folds and 3-folds on Day 4. The results suggest that AM-301 is safe and significantly decelerates SARS-CoV-2 replication in cell culture inhibition assays of prophylaxis (pre-viral load application) and mitigation (post-viral load application). Its physical (non-pharmaceutical) mechanism of action, safety and efficacy warrant additional investigations both in vitro and in vivo for safety and efficacy against a broad spectrum of airborne viruses and allergens.  相似文献   

8.

Background

Clara cell protein (CC16), the main secretory product of bronchiolar Clara cells, plays an important protective role in the respiratory tract against oxidative stress and inflammation. The purpose of the study was to investigate the role of elemental carbon ultrafine particles (EC-UFP)-induced oxidative stress on Clara cells and CC16 in a mouse model of allergic lung inflammation.

Methods

Ovalbumin (OVA)-sensitized mice were exposed to EC-UFP (507 μg/m3 for 24 h) or filtered air immediately prior to allergen challenge and systemically treated with N-acetylcysteine (NAC) or vehicle prior and during EC-UFP inhalation. CC16 was measured up to one week after allergen challenge in bronchoalveolar lavage fluid (BALF) and in serum. The relative expression of CC16 and TNF-α mRNA were measured in lung homogenates. A morphometrical analysis of mucus hypersecretion and electron microscopy served to investigate goblet cell metaplasia and Clara cell morphological alterations.

Results

In non sensitized mice EC-UFP inhalation caused alterations in CC16 concentration, both at protein and mRNA level, and induced Clara cell hyperplasia. In sensitized mice, inhalation of EC-UFP prior to OVA challenge caused most significant alterations of BALF and serum CC16 concentration, BALF total protein and TNF-α relative expression compared to relevant controls; their Clara cells displayed the strongest morphological alterations and strongest goblet cell metaplasia occurred in the small airways. NAC strongly reduced both functional and morphological alterations of Clara cells.

Conclusion

Our findings demonstrate that oxidative stress plays an important role in EC-UFP-induced augmentation of functional and morphological alterations of Clara cells in allergic lung inflammation.  相似文献   

9.
Perilla oil (PER) is rich in α‐linolenic acid (n‐3 fatty acid). To unravel the effects of dietary PER on allergic asthmatic inflammation, three kinds of dietary oil, including PER, corn oil (COR), and perilla compound oil (50% PER and 50% COR), were used for replacing the oil in an AIN76 feed consumed by ovalbumin (OVA)‐sensitized and challenged mice continuously for 5 wk. T‐helper type 1 lymphocyte (Th1)/T‐helper type 2 lymphocyte (Th2) and pro‐/anti‐inflammatory cytokines secreted by the cells from the airway, the lungs, and the spleen of experimental mice were determined by ELISA. The results showed that dietary PER inhibited interleukin (IL)‐1β and tumor necrosis factor (TNF)‐α secretions by lipopolysaccharide (LPS)‐stimulated lung cells, as well as interferon (IFN)‐γ and IL‐6 secretions by LPS‐stimulated splenocytes. Perilla compound oil increased the secretion ratio of IFN‐γ/IL‐5 (Th1/Th2 cytokines) in LPS‐stimulated bronchoalveolar lavage fluid cells, but decreased the ratio of IL‐6/IL‐10 (pro‐/anti‐inflammatory cytokines) in LPS‐stimulated splenocytes. The present study demonstrated that dietary PER and its compound oil protected the airways, the lungs, and the spleen from allergic inflammation in OVA‐challenged asthmatic mice, suggesting that an appropriate n‐6/n‐3 fatty acid ratio at a ratio of 1:1 or less in dietary oil may be beneficial to improve the Th2‐skewed allergic asthmatic inflammation. Practical applications: The present study demonstrated that dietary PER and its compound oil protected the airways, the lungs, and the spleen from allergic inflammation in OVA‐challenged asthmatic mice, suggesting that an appropriate n‐6/n‐3 fatty acid ratio at a ratio of 1:1 or less in dietary oil may be beneficial to improve the Th2‐skewed allergic asthmatic inflammation.  相似文献   

10.
Dry eye disease (DED) and allergic conjunctivitis affect a large number of patients, and many patients usually have both symptoms. We investigated the interactions between DED and allergic conjunctivitis in mice. Four experimental groups were compared: control, DED, allergy, and allergy with DED. DED was induced by removing the extraorbital lacrimal glands of the mice. Allergic conjunctivitis was induced by intraperitoneal administration of ovalbumin and antigen eye drops. The early phase reaction of the allergy was evaluated using the clinical score, scratching behavior, and vascular permeability in the conjunctiva. Epithelial barrier function was assessed by an LC-biotin assay. Tear fluid volume and corneal fluorescein staining decreased in the DED and allergy with DED groups. LC-biotin penetrated the entire epithelium of both the cornea and conjunctiva in DED mice. The clinical score of the early phase reaction was higher in allergy-induced mice than in non-allergy mice. Edema of the eyelid and conjunctiva were aggravated in mice with DED. The number of scratching episodes and leakage of Evans blue into the conjunctiva were higher in allergy-induced DED mice than in control mice. The presence of aqueous-deficient dry eye caused ocular surface epithelial damage and exacerbated allergic signs and symptoms.  相似文献   

11.
Chicken meat is often a major component of a modern diet. Allergy to chicken meat is relatively rare and occurs independently or in subjects allergic to ovalbumin (OVA). We examined the effect of adoptive transfer of OVA-CD4+ T cells on the immune response to OVA in mice fed chicken meat. Donor mice were injected intraperitoneally with 100 µg of OVA with Freund’s adjuvant two times over a week, and CD4+ T cells were isolated from them and transferred to naïve mice (CD4+/OVA/ChM group), which were then provoked with OVA with FA and fed freeze-dried chicken meat for 14 days. The mice injected with OVA and fed chicken meat (OVA/ChM group), and sensitized (OVA group) and healthy (PBS group) mice served as controls. Humoral and cellular response to OVA was monitored over the study. The CD4+/OVA/ChM group had lowered levels of anti-OVA IgG and IgA, and total IgE. There were significant differences in CD4+, CD4+CD25+, and CD4+CD25+Foxp3+ T cells between groups. OVA stimulation decreased the splenocyte proliferation index and IFN-γ secretion in the CD4+/OVA/ChM group compared to the OVA group. IL-4 was increased in the OVA/ChM mice, which confirms allergenic potential of the egg–meat protein combination. Transfer of OVA-experienced CD4+ T cells ameliorated the negative immune response to OVA.  相似文献   

12.
The human paranasal sinuses are the major source of intrinsic nitric oxide (NO) production in the human airway. NO plays several roles in the maintenance of physiological homeostasis and the regulation of airway inflammation through the expression of three NO synthase (NOS) isoforms. Measuring NO levels can contribute to the diagnosis and assessment of allergic rhinitis (AR) and chronic rhinosinusitis (CRS). In symptomatic AR patients, pro-inflammatory cytokines upregulate the expression of inducible NOS (iNOS) in the inferior turbinate. Excessive amounts of NO cause oxidative damage to cellular components, leading to the deposition of cytotoxic substances. CRS phenotype and endotype classifications have provided insights into modern treatment strategies. Analyses of the production of sinus NO and its metabolites revealed pathobiological diversity that can be exploited for useful biomarkers. Measuring nasal NO based on different NOS activities is a potent tool for specific interventions targeting molecular pathways underlying CRS endotype-specific inflammation. We provide a comprehensive review of the functional diversity of NOS isoforms in the human sinonasal system in relation to these two major nasal disorders’ pathologies. The regulatory mechanisms of NOS expression associated with the substrate bioavailability indicate the involvement of both type 1 and type 2 immune responses.  相似文献   

13.
14.
Effective nasal drug delivery is highly dependent on the delivery of drug from the nasal spray device. Atomisation of liquid spray occurs through the internal atomizer that can produce many forms of spray patterns and two of these, hollow-cone and full-cone sprays, are evaluated in this study to determine which spray pattern produced greater deposition in the middle regions of the nasal cavity. Past studies of spray particle deposition have ignored the device within the nasal cavity. Using computational fluid dynamics (CFD), two computational models of human nasal cavity model were reconstructed from CT-scans, where the difference between the two models was the presence of the nasal spray device accounting for the airway blockage at one of the nostrils. Experimental measurements from Particle Droplet Image Analyser (PDIA) were taken in order to gain confidence in determining the initial particle conditions for the computational models. An airflow field is induced through a negative pressure flow condition applied at the pharynx instead of constant flow rates at the left and the right nasal cavities. Subsequent airflow patterns and its effects on particle deposition, with and without a spray device, are compared. Contours and streamlines of the flow field revealed that the presence of a spray device in the nasal vestibule produced higher levels of disturbed flow, which helped the dispersion of the sprayed particles. Particle deposition was found to be high in the anterior regions of the nasal cavity caused by its inertia. Evaluation of the two spray types found that hollow spray cones produced more deposition in the middle regions of the nasal cavity. This paper also demonstrates the CFD methodology used, which can help in better understanding the design of future atomizers for nasal spray use.  相似文献   

15.
In high-speed modern industries, high-temperature stability of materials is essential. A promising high-temperature material currently attracting attention is silicon carbide (SiC)-based ceramic matrix composites (CMC). However, a disadvantage of these materials is their reduced lifetime in an oxidizing atmosphere. To overcome this, environmental barrier coating can be employed. In this study, we aimed to fabricate an environmental barrier coating using suspension plasma spray with Yb2Si2O7, which exhibits excellent oxidation resistance and a similar thermal expansion coefficient to SiC. To prepare the crystalline Yb2Si2O7 coating layer, the gas concentration of the plasma spray was adjusted, and then the suspension manufacturing solvent was adjusted and sprayed. The prepared coating samples were analyzed by X-ray diffraction, scanning electron microscope, transmission electron microscopes, and energy dispersive X-ray spectroscopy to determine phase and microstructure changes. Highly crystalline ytterbium disilicate was observed at low plasma enthalpy with no hydrogen and 20% addition of water.  相似文献   

16.
Because both endotoxemia and gut dysbiosis post-splenectomy might be associated with systemic infection, the susceptibility against infection was tested by dextran sulfate solution (DSS)-induced colitis and lipopolysaccharide (LPS) injection models in splenectomy mice with macrophage experiments. Here, splenectomy induced a gut barrier defect (FITC-dextran assay, endotoxemia, bacteria in mesenteric lymph nodes, and the loss of enterocyte tight junction) and gut dysbiosis (increased Proteobacteria by fecal microbiome analysis) without systemic inflammation (serum IL-6). In parallel, DSS induced more severe mucositis in splenectomy mice than sham-DSS mice, as indicated by mortality, stool consistency, gut barrier defect, serum cytokines, and blood bacterial burdens. The presence of green fluorescent-producing (GFP) E. coli in the spleen of sham-DSS mice after an oral gavage supported a crucial role of the spleen in the control of bacteria from gut translocation. Additionally, LPS administration in splenectomy mice induced lower serum cytokines (TNF-α and IL-6) than LPS-administered sham mice, perhaps due to LPS tolerance from pre-existing post-splenectomy endotoxemia. In macrophages, LPS tolerance (sequential LPS stimulation) demonstrated lower cell activities than the single LPS stimulation, as indicated by the reduction in supernatant cytokines, pro-inflammatory genes (iNOS and IL-1β), cell energy status (extracellular flux analysis), and enzymes of the glycolysis pathway (proteomic analysis). In conclusion, a gut barrier defect after splenectomy was vulnerable to enterocyte injury (such as DSS), which caused severe bacteremia due to defects in microbial control (asplenia) and endotoxemia-induced LPS tolerance. Hence, gut dysbiosis and gut bacterial translocation in patients with a splenectomy might be associated with systemic infection, and gut-barrier monitoring or intestinal tight-junction strengthening may be useful.  相似文献   

17.
陆威  苗冉  吴志根  吴长春  谢伟 《化工学报》2022,73(7):2924-2932
针对非牛顿流体在波节套管换热器管程的流动与换热进行了实验研究。重点研究了0.2%黄原胶溶液(XG)在不同波节套管换热器管程流动时的传热与阻力特性,并分析了强化传热机理。结果表明在相同工况下,随着管程黄原胶溶液Reynolds数ReXG的增大,套管换热器总传热系数k和管程进出口压降Δp逐渐增大;波高H和波距S影响黄原胶溶液在套管换热器管程的流动与换热。随波高H增大,黄原胶溶液受波节处的涡旋效应的影响更明显,流体层间剪切力变大导致黄原胶溶液黏度变小,湍流程度更大,管程传热性能提高,压降也增大,但综合传热性能不断优化;随波距S增大,单位长度波节数量减少,对黄原胶溶液扰动影响降低,湍流程度降低,管程传热系数先增大后减小,流动阻力不断降低,综合传热性能先提高后减弱。当H=3.5 mm、S=30 mm时管程波节管的综合换热因子ηtube达到最大,ηtube是相同条件下圆管的5.11~6.69倍。  相似文献   

18.
陆威  苗冉  吴志根  吴长春  谢伟 《化工学报》1951,73(7):2924-2932
针对非牛顿流体在波节套管换热器管程的流动与换热进行了实验研究。重点研究了0.2%黄原胶溶液(XG)在不同波节套管换热器管程流动时的传热与阻力特性,并分析了强化传热机理。结果表明在相同工况下,随着管程黄原胶溶液Reynolds数ReXG的增大,套管换热器总传热系数k和管程进出口压降Δp逐渐增大;波高H和波距S影响黄原胶溶液在套管换热器管程的流动与换热。随波高H增大,黄原胶溶液受波节处的涡旋效应的影响更明显,流体层间剪切力变大导致黄原胶溶液黏度变小,湍流程度更大,管程传热性能提高,压降也增大,但综合传热性能不断优化;随波距S增大,单位长度波节数量减少,对黄原胶溶液扰动影响降低,湍流程度降低,管程传热系数先增大后减小,流动阻力不断降低,综合传热性能先提高后减弱。当H=3.5 mm、S=30 mm时管程波节管的综合换热因子ηtube达到最大,ηtube是相同条件下圆管的5.11~6.69倍。  相似文献   

19.
Recent studies on the pathophysiology of irritable bowel syndrome (IBS) have focused on the role of mast cells (MCs) in intestinal mucosal immunity. A link between allergic airway diseases (AADs) and IBS has been suggested because both diseases have similar pathophysiology. We aimed to investigate whether the induction of AAD in mice could lead to inflammation of the colonic mucosa, similar to IBS. We also evaluated whether this inflammatory response could be suppressed by administering a therapeutic agent. Mice were divided into three groups: control, AAD-induced, and salbutamol-treated. An AAD mouse model was established by intraperitoneal injection and nasal challenge with ovalbumin. Mice with AAD were intranasally administered salbutamol. Analyses of cytokine levels, MC count, and tryptase levels in the intestinal mucosa were performed to compare the changes in inflammatory responses among the three groups. Inflammation was observed in the intestinal mucosa of mice in the AAD group. This inflammation in AAD mice was suppressed after salbutamol treatment. Our study demonstrates that AAD induces an inflammatory response similar to that in IBS, suggesting a possible association between IBS and AADs. In patients with IBS with such allergic components, salbutamol may have the potential to alleviate the inflammatory response.  相似文献   

20.
Inactive cortisone is converted into active cortisol by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Excessive levels of active glucocorticoids could deteriorate skin barrier function; barrier impairment is also observed in aged skin. In this study, we aimed to determine whether permeability barrier impairment in the aged skin could be related to increased 11β-HSD1 expression. Aged humans (n = 10) showed increased cortisol in the stratum corneum (SC) and oral epithelium, compared to young subjects (n = 10). 11β-HSD1 expression (as assessed via immunohistochemical staining) was higher in the aged murine skin. Aged hairless mice (56-week-old, n = 5) manifested greater transepidermal water loss, lower SC hydration, and higher levels of serum inflammatory cytokines than the young mice (8-week-old, n = 5). Aged 11β-HSD1 knockout mice (n = 11), 11β-HSD1 inhibitor (INHI)-treated aged wild type (WT) mice (n = 5) and young WT mice (n = 10) exhibited reduced SC corticosterone level. Corneodesmosome density was low in WT aged mice (n = 5), but high in aged 11β-HSD1 knockout and aged INHI-treated WT mice. Aged mice exhibited lower SC lipid levels; this effect was reversed by INHI treatment. Therefore, upregulation of 11β-HSD1 in the aged skin increases the active-glucocorticoid levels; this suppresses SC lipid biosynthesis, leading to impaired epidermal permeability barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号