首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder affecting subjects (premutation carriers) with a 55-200 CGG-trinucleotide expansion in the 5′UTR of the fragile X mental retardation 1 gene (FMR1) typically after age 50. As both the presence of white matter hyperintensities (WMHs) and atrophied gray matter on magnetic resonance imaging (MRI) are linked to age-dependent decline in cognition, here we tested whether MRI outcomes (WMH volume (WMHV) and brain volume) were correlated with mitochondrial bioenergetics from peripheral blood monocytic cells in 87 carriers with and without FXTAS. As a parameter assessing cumulative damage, WMHV was correlated to both FXTAS stages and age, and brain volume discriminated between carriers and non-carriers. Similarly, mitochondrial mass and ATP production showed an age-dependent decline across all participants, but in contrast to WMHV, only FADH2-linked ATP production was significantly reduced in carriers vs. non-carriers. In carriers, WMHV negatively correlated with ATP production sustained by glucose-glutamine and FADH2-linked substrates, whereas brain volume was positively associated with the latter and mitochondrial mass. The observed correlations between peripheral mitochondrial bioenergetics and MRI findings—and the lack of correlations with FXTAS diagnosis/stages—may stem from early brain bioenergetic deficits even before overt FXTAS symptoms and/or imaging findings.  相似文献   

2.
Fifty-five to two hundred CGG repeats (called a premutation, or PM) in the 5′-UTR of the FMR1 gene are generally unstable, often expanding to a full mutation (>200) in one generation through maternal inheritance, leading to fragile X syndrome, a condition associated with autism and other intellectual disabilities. To uncover the early mechanisms of pathogenesis, we performed metabolomics and proteomics on amniotic fluids from PM carriers, pregnant with male fetuses, who had undergone amniocentesis for fragile X prenatal diagnosis. The prenatal metabolic footprint identified mitochondrial deficits, which were further validated by using internal and external cohorts. Deficits in the anaplerosis of the Krebs cycle were noted at the level of serine biosynthesis, which was confirmed by rescuing the mitochondrial dysfunction in the carriers’ umbilical cord fibroblasts using alpha-ketoglutarate precursors. Maternal administration of serine and its precursors has the potential to decrease the risk of developing energy shortages associated with mitochondrial dysfunction and linked comorbidities.  相似文献   

3.
Abnormal trinucleotide expansions cause rare disorders that compromise quality of life and, in some cases, lifespan. In particular, the expansions of the CGG-repeats stretch at the 5’-UTR of the Fragile X Mental Retardation 1 (FMR1) gene have pleiotropic effects that lead to a variety of Fragile X-associated syndromes: the neurodevelopmental Fragile X syndrome (FXS) in children, the late-onset neurodegenerative disorder Fragile X-associated tremor-ataxia syndrome (FXTAS) that mainly affects adult men, the Fragile X-associated primary ovarian insufficiency (FXPOI) in adult women, and a variety of psychiatric and affective disorders that are under the term of Fragile X-associated neuropsychiatric disorders (FXAND). In this review, we will describe the pathological mechanisms of the adult “gain-of-function” syndromes that are mainly caused by the toxic actions of CGG RNA and FMRpolyG peptide. There have been intensive attempts to identify reliable peripheral biomarkers to assess disease progression and onset of specific pathological traits. Mitochondrial dysfunction, altered miRNA expression, endocrine system failure, and impairment of the GABAergic transmission are some of the affectations that are susceptible to be tracked using peripheral blood for monitoring of the motor, cognitive, psychiatric and reproductive impairment of the CGG-expansion carriers. We provided some illustrative examples from our own cohort. Understanding the association between molecular pathogenesis and biomarkers dynamics will improve effective prognosis and clinical management of CGG-expansion carriers.  相似文献   

4.
Fragile X syndrome (FXS) is a leading genetic disorder of intellectual disability caused by the loss of the functional fragile X mental retardation protein (FMRP). To date, there is no efficacious mechanism-based medication for FXS. With regard to potential disease mechanisms in FXS, it is widely accepted that the lack of FMRP causes elevated protein synthesis and deregulation of neuronal signaling. Abnormal enhancement of the ERK½ (extracellular signal-regulated kinase ½) and PI3K-Akt (Phosphoinositide 3 kinase-protein kinase B) signaling pathways has been identified in both FXS patients and FXS mouse models. In this study, we show that carbamazepine, which is an FDA-approved drug and has been mainly used to treat seizure and neuropathic pain, corrects cognitive deficits including passive avoidance and object location memory in FXS mice. Carbamazepine also rescues hyper locomotion and social deficits. At the cellular level, carbamazepine dampens the elevated level of ERK½ and Akt signaling as well as protein synthesis in FXS mouse neurons. Together, these results advocate repurposing carbamazepine for FXS treatment.  相似文献   

5.
Interleukin (IL)-1β is an important pro-inflammatory cytokine in the progression of osteoarthritis (OA), which impairs mitochondrial function and induces the production of nitric oxide (NO) in chondrocytes. The aim was to investigate if blockade of NO production prevents IL-1β-induced mitochondrial dysfunction in chondrocytes and whether cAMP and AMP-activated protein kinase (AMPK) affects NO production and mitochondrial function. Isolated human OA chondrocytes were stimulated with IL-1β in combination with/without forskolin, L-NIL, AMPK activator or inhibitor. The release of NO, IL-6, PGE2, MMP3, and the expression of iNOS were measured by ELISA or Western blot. Parameters of mitochondrial respiration were measured using a seahorse analyzer. IL-1β significantly induced NO release and mitochondrial dysfunction. Inhibition of iNOS by L-NIL prevented IL-1β-induced NO release and mitochondrial dysfunction but not IL-1β-induced release of IL-6, PGE2, and MMP3. Enhancement of cAMP by forskolin reduced IL-1β-induced NO release and prevented IL-1β-induced mitochondrial impairment. Activation of AMPK increased IL-1β-induced NO production and the negative impact of IL-1β on mitochondrial respiration, whereas inhibition of AMPK had the opposite effects. NO is critically involved in the IL-1β-induced impairment of mitochondrial respiration in human OA chondrocytes. Increased intracellular cAMP or inhibition of AMPK prevented both IL-1β-induced NO release and mitochondrial dysfunction.  相似文献   

6.
7.
8.
Skeletal muscle is a heterogeneous tissue composed of a variety of functionally different fiber types. Slow-twitch type I muscle fibers are rich with mitochondria, and mitochondrial biogenesis promotes a shift towards more slow fibers. Leucine, a branched-chain amino acid (BCAA), regulates slow-twitch muscle fiber expression and mitochondrial function. The BCAA content is increased in porcine whole-blood protein hydrolysates (PWBPH) but the effect of PWBPH on muscle fiber type conversion is unknown. Supplementation with PWBPH (250 and 500 mg/kg for 5 weeks) increased time to exhaustion in the forced swimming test and the mass of the quadriceps femoris muscle but decreased the levels of blood markers of exercise-induced fatigue. PWBPH also promoted fast-twitch to slow-twitch muscle fiber conversion, elevated the levels of mitochondrial biogenesis markers (SIRT1, p-AMPK, PGC-1α, NRF1 and TFAM) and increased succinate dehydrogenase and malate dehydrogenase activities in ICR mice. Similarly, PWBPH induced markers of slow-twitch muscle fibers and mitochondrial biogenesis in C2C12 myotubes. Moreover, AMPK and SIRT1 inhibition blocked the PWBPH-induced muscle fiber type conversion in C2C12 myotubes. These results indicate that PWBPH enhances exercise performance by promoting slow-twitch muscle fiber expression and mitochondrial function via the AMPK/SIRT1 signaling pathway.  相似文献   

9.
Mitochondrial biogenesis is a highly controlled process that depends on diverse signalling pathways responding to cellular and environmental signals. AMP-activated protein kinase (AMPK) is a critical metabolic enzyme that acts at a central control point in cellular energy homeostasis. Numerous studies have revealed the crucial roles of AMPK in the regulation of mitochondrial biogenesis; however, molecular mechanisms underlying this process are still largely unknown. Previously, we have shown that, in cellular slime mould Dictyostelium discoideum, the overexpression of the catalytic α subunit of AMPK led to enhanced mitochondrial biogenesis, which was accompanied by reduced cell growth and aberrant development. Here, we applied mass spectrometry-based proteomics of Dictyostelium mitochondria to determine the impact of chronically active AMPKα on the phosphorylation state and abundance of mitochondrial proteins and to identify potential protein targets leading to the biogenesis of mitochondria. Our results demonstrate that enhanced mitochondrial biogenesis is associated with variations in the phosphorylation levels and abundance of proteins related to energy metabolism, protein synthesis, transport, inner membrane biogenesis, and cellular signalling. The observed changes are accompanied by elevated mitochondrial respiratory activity in the AMPK overexpression strain. Our work is the first study reporting on the global phosphoproteome profiling of D. discoideum mitochondria and its changes as a response to constitutively active AMPK. We also propose an interplay between the AMPK and mTORC1 signalling pathways in controlling the cellular growth and biogenesis of mitochondria in Dictyostelium as a model organism.  相似文献   

10.
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the full mutation as well as highly localized methylation of the fragile X mental retardation 1 (FMR1) gene on the long arm of the X chromosome. Children with FXS are commonly co-diagnosed with Autism Spectrum Disorder, attention and learning problems, anxiety, aggressive behavior and sleep disorder, and early interventions have improved many behavior symptoms associated with FXS. In this review, we performed a literature search of original and review articles data of clinical trials and book chapters using MEDLINE (1990–2021) and ClinicalTrials.gov. While we have reviewed the biological importance of the fragile X mental retardation protein (FMRP), the FXS phenotype, and current diagnosis techniques, the emphasis of this review is on clinical interventions. Early non-pharmacological interventions in combination with pharmacotherapy and targeted treatments aiming to reverse dysregulated brain pathways are the mainstream of treatment in FXS. Overall, early diagnosis and interventions are fundamental to achieve optimal clinical outcomes in FXS.  相似文献   

11.
Differentiation-inducing factor-1 (DIF-1) is a chlorinated alkylphenone (a polyketide) found in the cellular slime mold Dictyostelium discoideum. DIF-1 and its derivative, DIF-1(3M) promote glucose consumption in vitro in mammalian cells and in vivo in diabetic rats; they are expected to be the leading antiobesity and antidiabetes compounds. In this study, we investigated the mechanisms underlying the actions of DIF-1 and DIF-1(3M). In isolated mouse liver mitochondria, these compounds at 2–20 μM promoted oxygen consumption in a dose-dependent manner, suggesting that they act as mitochondrial uncouplers, whereas CP-DIF-1 (another derivative of DIF-1) at 10–20 μM had no effect. In confluent mouse 3T3-L1 fibroblasts, DIF-1 and DIF-1(3M) but not CP-DIF-1 induced phosphorylation (and therefore activation) of AMP kinase (AMPK) and promoted glucose consumption and metabolism. The DIF-induced glucose consumption was reduced by compound C (an AMPK inhibitor) or AMPK knock down. These data suggest that DIF-1 and DIF-1(3M) promote glucose uptake, at least in part, via an AMPK-dependent pathway in 3T3-L1 cells, whereas cellular metabolome analysis revealed that DIF-1 and DIF-1(3M) may act differently at least in part.  相似文献   

12.
13.
Mitochondrial functional abnormalities or quantitative decreases are considered to be one of the most plausible pathogenic mechanisms of Parkinson’s disease (PD). Thus, mitochondrial complex inhibitors are often used for the development of experimental PD. In this study, we used rotenone to create in vitro cell models of PD, then used these models to investigate the effects of 1,5-anhydro-D-fructose (1,5-AF), a monosaccharide with protective effects against a range of cytotoxic substances. Subsequently, we investigated the possible mechanisms of these protective effects in PC12 cells. The protection of 1,5-AF against rotenone-induced cytotoxicity was confirmed by increased cell viability and longer dendritic lengths in PC12 and primary neuronal cells. Furthermore, in rotenone-treated PC12 cells, 1,5-AF upregulated peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) expression and enhanced its deacetylation, while increasing AMP-activated protein kinase (AMPK) phosphorylation. 1,5-AF treatment also increased mitochondrial activity in these cells. Moreover, PGC-1α silencing inhibited the cytoprotective and mitochondrial biogenic effects of 1,5-AF in PC12 cells. Therefore, 1,5-AF may activate PGC-1α through AMPK activation, thus leading to mitochondrial biogenic and cytoprotective effects. Together, our results suggest that 1,5-AF has therapeutic potential for development as a treatment for PD.  相似文献   

14.
Non-alcoholic fatty liver disease (NAFLD) is a chronic metabolic liver disease associated with obesity and insulin resistance. Activation of the purinergic receptor P2Y2R has been reported to promote adipogenesis, inflammation and dyslipidemia in adipose tissues in obese mice. However, the role of P2Y2R and its mechanisms in NAFLD remain unknown. We hypothesized that P2Y2R deficiency may play a protective role in NAFLD by modulating lipid metabolism in the liver. In this study, we fed wild type and P2Y2R knockout mice with a high-fat diet (HFD) for 12 weeks and analyzed metabolic phenotypes. First, P2Y2R deficiency effectively improved insulin resistance with a reduction in body weight and plasma insulin. Second, P2Y2R deficiency attenuated hepatic lipid accumulation and injury with reduced alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Third, P2Y2R deficiency decreased the expression of fatty acid synthesis mediators (cluster of differentiation (CD36), fatty acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD1)); and increased the expression of adipose triglyceride lipase (ATGL), a lipolytic enzyme. Mechanistically, P2Y2R deficiency increased the AMP-activated protein kinase (AMPK) activity to improve mitochondrial fatty acid β-oxidation (FAO) by regulating acetyl-CoA carboxylase (ACC) and carnitine palmitoyltransferase 1A (CPT1A)-mediated FAO pathway. In addition, P2Y2R deficiency increased peroxisome proliferator-activated gamma co-activator-1α (PGC-1α)-mediated mitochondrial biogenesis. Conclusively, P2Y2R deficiency ameliorated HFD-induced hepatic steatosis by enhancing FAO through AMPK signaling and PGC-1α pathway, suggesting P2Y2R as a promising therapeutic target for NAFLD.  相似文献   

15.
4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic β-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic β-cells and elucidated the cellular mechanism involved in MBP-induced β-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of β-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on β-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.  相似文献   

16.
Aerobic interval training (AIT) can favorably affect cardiovascular diseases. However, the effects of AIT on post-myocardial infarction (MI)—associated mitochondrial dysfunctions remain unclear. In this study, we investigated the protective effects of AIT on myocardial mitochondria in post-MI rats by focusing on mitochondrial dynamics (fusion and fission). Mitochondrial respiratory functions (as measured by the respiratory control ratio (RCR) and the ratio of ADP to oxygen consumption (P/O)); complex activities; dynamic proteins (mitofusin (mfn) 1/2, type 1 optic atrophy (OPA1) and dynamin-related protein1 (DRP1)); nuclear peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α); and the oxidative signaling of extracellular signal-regulated kinase (ERK) 1/2, c-Jun NH2-terminal protein kinase (JNK) and P53 were observed. Post-MI rats exhibited mitochondrial dysfunction and adverse mitochondrial network dynamics (reduced fusion and increased fission), which was associated with activated ERK1/2-JNK-P53 signaling and decreased nuclear PGC-1α. After AIT, MI-associated mitochondrial dysfunction was improved (elevated RCR and P/O and enhanced complex I, III and IV activities); in addition, increased fusion (mfn2 and OPA1), decreased fission (DRP1), elevated nuclear PGC-1α and inactivation of the ERK1/2-JNK-P53 signaling were observed. These data demonstrate that AIT may restore the post-MI mitochondrial function by inhibiting dynamics pathological remodeling, which may be associated with inactivation of ERK1/2-JNK-P53 signaling and increase in nuclear PGC-1α expression.  相似文献   

17.
Sustained sarcolemma depolarization due to loss of the Na,K-ATPase function is characteristic for skeletal muscle motor dysfunction. Ouabain, a specific ligand of the Na,K-ATPase, has a circulating endogenous analogue. We hypothesized that the Na,K-ATPase targeted by the elevated level of circulating ouabain modulates skeletal muscle electrogenesis and prevents its disuse-induced disturbances. Isolated soleus muscles from rats intraperitoneally injected with ouabain alone or subsequently exposed to muscle disuse by 6-h hindlimb suspension (HS) were studied. Conventional electrophysiology, Western blotting, and confocal microscopy with cytochemistry were used. Acutely applied 10 nM ouabain hyperpolarized the membrane. However, a single injection of ouabain (1 µg/kg) prior HS was unable to prevent the HS-induced membrane depolarization. Chronic administration of ouabain for four days did not change the α1 and α2 Na,K-ATPase protein content, however it partially prevented the HS-induced loss of the Na,K-ATPase electrogenic activity and sarcolemma depolarization. These changes were associated with increased phosphorylation levels of AMP-activated protein kinase (AMPK), its substrate acetyl-CoA carboxylase and p70 protein, accompanied with increased mRNA expression of interleikin-6 (IL-6) and IL-6 receptor. Considering the role of AMPK in regulation of the Na,K-ATPase, we suggest an IL-6/AMPK contribution to prevent the effects of chronic ouabain under skeletal muscle disuse.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号