首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Decidualization is essential to rodent and primate pregnancy. Senescence is increased during decidualization. Failure of senescence clearance during decidualization will cause pregnancy abnormality. Caveolin-1 is located in plasmalemmal caveolae and involved in senescence. However, whether caveolin-1 is involved in decidualization remains undefined. In this study, we examined the expression, regulation and function of Caveolin-1 during mouse early pregnancy and under mouse and human in vitro decidualization. From days 1 to 8 of pregnancy, Caveolin-1 signals are mainly located in endothelium and myometrium. Estrogen stimulates Caveolin-1 expression in endothelium. Deficiency of estrogen receptor α significantly promotes Caveolin-1 level in uterine stromal cells. Progesterone upregulates Caveolin-1 expression in luminal epithelium. During mouse in vitro decidualization, Caveolin-1 is significantly increased. However, Caveolin-1 is obviously decreased during human in vitro decidualization. Caveolin-1 overexpression and siRNA suppress and upregulate IGFBP1 expression under in vitro decidualization, respectively. Blastocysts-derived tumor necrosis factor α (TNFα) and human Chorionic Gonadotropin (hCG) regulate Caveolin-1 in mouse and human decidual cells, respectively. Caveolin-1 levels are also regulated by high glucose and insulin. In conclusion, a low level of Caveolin-1 should be beneficial for human decidualization.  相似文献   

3.
4.
Decidualization is essential to the establishment of pregnancy in rodents and primates. Laminin A5 (encoding by Laminin α5) is a member of the laminin family, which is mainly expressed in the basement membranes. Although laminins regulate cellular phenotype maintenance, adhesion, migration, growth, and differentiation, the expression, function, and regulation of laminin A5 during early pregnancy are still unknown. Therefore, we investigated the expression and role of laminin A5 during mouse and human decidualization. Laminin A5 is highly expressed in mouse decidua and artificially induced deciduoma. Laminin A5 is significantly increased under in vitro decidualization. Laminin A5 knockdown significantly inhibits the expression of Prl8a2, a marker for mouse decidualization. Progesterone stimulates the expression of laminin A5 in ovariectomized mouse uterus and cultured mouse stromal cells. We also show that progesterone regulates laminin A5 through the PKA-CREB-C/EBPβ pathway. Laminin A5 is also highly expressed in human pregnant decidua and cultured human endometrial stromal cells during in vitro decidualization. Laminin A5 knockdown by siRNA inhibits human in vitro decidualization. Collectively, our study reveals that laminin A5 may play a pivotal role during mouse and human decidualization via the PKA-CREB-C/EBPβ pathway.  相似文献   

5.
6.
7.
Eutopic endometrium in patients with endometriosis is characterized by aberrant expression of essential genes during the implantation window. It predisposes to disturbance of endometrial receptivity. The pathomechanism of implantation failures in women with endometriosis remains unclear. This paper aims to summarize the knowledge on epigenetic mechanisms in eutopic endometrium in the group of patients with both endometriosis and infertility. The impaired DNA methylation patterns of gene promoter regions in eutopic tissue was established. The global profile of histone acetylation and methylation and the analysis of selected histone modifications showed significant differences in the endometrium of women with endometriosis. Aberrant expression of the proposed candidate genes may promote an unfavorable embryonic implantation environment of the endometrium due to an immunological dysfunction, inflammatory reaction, and apoptotic response in women with endometriosis. The role of the newly discovered proteins regulating gene expression, i.e., TET proteins, in endometrial pathology is not yet completely known. The cells of the eutopic endometrium in women with endometriosis contain a stable, impaired methylation pattern and a histone code. Medication targeting critical genes responsible for the aberrant gene expression pattern in eutopic endometrium may help treat infertility in women with endometriosis.  相似文献   

8.
In domestic ruminants, endometrial receptivity is related to successful pregnancy and economic efficiency. Despite several molecules having been reported in the past regarding endometrial receptivity regulation, much regarding the mechanism of endometrial receptivity regulation remains unknown due to the complex nature of the trait. In this work, we demonstrated that the cysteine-rich transmembrane bone morphogenetic protein (BMP) regulator 1 (CRIM1) served as a novel regulator in the regulation of goat endometrial receptivity in vitro. Our results showed that hormones and IFN-τ increased the expression of CRIM1 in goat endometrial epithelial cells (EECs). Knockdown of CRIM1 via specific shRNA hindered cell proliferation, cell adhesion and prostaglandins (PGs) secretion and thus derailed normal endometrial receptivity. We further confirmed that receptivity defect phenotypes due to CRIM1 interference were restored by ATG7 overexpression in EECs while a loss of ATG7 further impaired receptivity phenotypes. Moreover, our results showed that changing the expression of ATG7 affected the reactive oxygen species (ROS) production. Moreover, mR-143-5p was shown to be a potential upstream factor of CRIM1-regulated endometrial receptivity in EECs. Overall, these results suggest that CRIM1, as the downstream target of miR-143-5p, has effects on ATG7-dependent autophagy, regulating cell proliferation, cell adhesion and PG secretion, and provides a new target for the diagnosis and treatment of early pregnancy failure and for improving the success rates of artificial reproduction.  相似文献   

9.
The aim of this research was to determine the levels of human leukocyte antigen G (HLA-G) and endometrial Natural Killer ((e)NK) cell percentages in uterine flushing samples from primary and secondary infertile women. sHLA-G levels were lower in the uterine flushing samples from primary infertile women in comparison with women with secondary infertility. Lower CD56+KIR2DL4+ (e)NK cell percentages were detected in primary infertile women compared with secondary infertile women. This is the first study demonstrating that primary and secondary unexplained infertilities are characterized by different basal sHLA-G levels and CD56+KIR2DL4+ (e)NK cell percentages.  相似文献   

10.
Currently, infertility affects 8–12% of reproductive age couples worldwide, a problem that also affects women suffering from recurrent implantation failure (RIF). RIF is a complex condition resulting from many physiological and molecular mechanisms involving dynamic endometrium–blastocyst interaction. The most important are the endometrial receptivity process, decidualization, trophoblast invasion, and blastocyst nesting. Although the exact multifactorial pathogenesis of RIF remains unclear, many studies have suggested the association between hormone level imbalance, disturbances of angiogenic and immunomodulatory factors, certain genetic polymorphisms, and occurrence of RIF. These studies were performed in quite small groups. Additionally, the results are inconsistent between ethnicities. The present review briefly summarizes the importance of factors involved in RIF development that could also serve as diagnostic determinants. Moreover, our review could constitute part of a new platform for discovery of novel diagnostic and therapeutic solutions for RIF.  相似文献   

11.
12.
Development of endometrial receptivity is crucial for successful embryo implantation and pregnancy initiation. Understanding the molecular regulation underpinning endometrial transformation to a receptive state is key to improving implantation rates in fertility treatments such as IVF. With microRNAs (miRNAs) increasingly recognized as important gene regulators, recent studies have investigated the role of miRNAs in the endometrium. Studies on miRNAs in endometrial disorders such as endometriosis and endometrial cancer have been reviewed previously. In this minireview, we aim to provide an up-to-date knowledge of miRNAs in the regulation of endometrial receptivity. Since endometrial remodelling differs considerably between species, we firstly summarised the key events of the endometrial cycle in humans and mice and then reviewed the miRNAs identified so far in these two species with likely functional significance in receptivity establishment. To date, 29 miRNAs have been reported in humans and 15 miRNAs in mice within various compartments of the endometrium that may potentially modulate receptivity; miRNAs regulating the Wnt signalling and those from the let-7, miR-23, miR-30, miR-200 and miR-183 families are found in both species. Future studies are warranted to investigate miRNAs as biomarkers and/or therapeutic targets to detect/improve endometrial receptivity in human fertility treatment.  相似文献   

13.
14.
Ocular pathologic angiogenesis is an important causative risk factor of blindness in retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular macular degeneration. Guibi-tang (GBT) is a frequently used oriental herbal formula in East Asian countries, and is also called Qui-pi-tang in Chinese and Kihi-To in Japanese. In the present study, we investigated the preventive effect of GBT on retinal pathogenic neovascularization in a mouse model of oxygen-induced retinopathy (OIR). C57BL/6 mice were exposed to 75% hyperoxia for five days on postnatal day 7 (P7). The mice were then exposed to room air from P12 to P17 to induce ischemic proliferative retinopathy. GBT (50 or 100 mg/kg/day) was intraperitoneally administered daily for five days (from P12 to P16). On P17, Retinal neovascularization was measured on P17, and the expression levels of 55 angiogenesis-related factors were analyzed using protein arrays. GBT significantly decreased retinal pathogenic angiogenesis in OIR mice, and protein arrays revealed that GBT decreased PAI-1 protein expression levels. Quantitative real-time PCR revealed that GBT reduced vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), and plasminogen activator inhibitor 1 (PAI-1) mRNA levels in OIR mice. GBT promotes potent inhibitory activity for retinal neovascularization by decreasing VEGF, FGF2, and PAI-1 levels.  相似文献   

15.
Blastocyst implantation involves multiple interactions with numerous molecules expressed in endometrial epithelial cells (EECs) during the implantation window; however, there is limited information regarding the molecular mechanism underlying the crosstalk. In blastocysts, fibronectin plays a major role in the adhesion of various types of cells by binding to extracellular matrix proteins via the Arg-Gly-Asp (RGD) motif. In EECs, RGD-recognizing integrins are important bridging receptors for fibronectin, whereas the non-RGD binding of fibronectin includes interactions with dipeptidyl peptidase IV (DPPIV)/cluster of differentiation (CD) 26. Fibronectin may also bind to aminopeptidase N (APN)/CD13, and in the endometrium, these peptidases are present in plasma membranes and lysosomal membranes. Blastocyst implantation is accompanied by lysosome exocytosis, which transports various peptidases and nutrients into the endometrial cavity to facilitate blastocyst implantation. Both DPPIV and APN are released into the uterine cavity via shedding of microvesicles (MVs) from EECs. Recently, extracellular vesicles derived from endometrial cells have been proposed to act on trophectoderm cells to promote implantation. MVs are also secreted from embryonal stem cells and may play an active role in implantation. Thus, crosstalk between the blastocyst and endometrium via extracellular vesicles is a new insight into the fundamental molecular basis of blastocyst implantation.  相似文献   

16.
We investigated the HE4 variant-specific expression patterns in various normal tissues as well as in normal and malignant endometrial tissues. The relationships between mRNA variants and age, body weight, or survival are analyzed. ICAT-labeled normal and endometrial cancer (EC) tissues were analyzed with multidimensional liquid chromatography followed by tandem mass spectrometry. Levels of HE4 mRNA variants were measured by real-time PCR. Mean mRNA levels were compared among 16 normal endometrial samples, 14 grade 1 and 14 grade 3 endometrioid EC, 15 papillary serous EC, and 14 normal human tissue samples. The relationship between levels of HE4 variants and EC patient characteristics was analyzed with the use of Pearson correlation test. We found that, although all five HE4 mRNA variants are detectable in normal tissue samples, their expression is highly tissue-specific, with epididymis, trachea, breast and endometrium containing the highest levels. HE4-V0, -V1, and -V3 are the most abundant variants in both normal and malignant tissues. All variants are significantly increased in both endometrioid and papillary serous EC, with higher levels observed in grade 3 endometrioid EC. In the EC group, HE4-V1, -V3, and -V4 levels inversely correlate with EC patient survival, whereas HE4-V0 levels positively correlate with age. HE4 variants exhibit tissue-specific expression, suggesting that each variant may exert distinct functions in normal and malignant cells. HE4 levels appear to correlate with EC patient survival in a variant-specific manner. When using HE4 as a biomarker for EC management, the effects of age should be considered.  相似文献   

17.
目的探讨核输入受体蛋白13(Importin 13,IPO13)在子宫内膜异位症和子宫内膜癌中的表达及其临床意义。方法随机选取20份正常增殖期子宫内膜和20份正常分泌期子宫内膜标本为对照组A、B,20例子宫内膜异位症和20例子宫内膜癌患者的子宫内膜标本为实验组C、D。采用免疫组化法检测IPO13在各组中是否表达;免疫荧光法检测IPO13和干/祖细胞标记在各组中的共表达;荧光定量PCR法检测各组中IPO13基因mRNA转录水平;Western blot法检测IPO13蛋白在各组中的表达水平。结果 IPO13在各组子宫内膜腺上皮细胞和间质细胞的胞浆及胞核中均有表达。对照组B的IPO13阳性细胞数明显低于对照组A和实验组(P<0.01)。IPO13与CD34、CD45、端粒酶、OCT4、C-KIT、PDGF-Rβ、CD90和CD146共表达于各组子宫内膜的上皮细胞和间质细胞;实验组及对照组A的IPO13基因mRNA和IPO13蛋白表达量明显高于对照组B(P<0.01)。结论 IPO13在正常子宫内膜中有表达,且增殖期表达高于分泌期;在子宫内膜异位症和子宫内膜癌中的表达明显高于正常分泌期子宫内膜,此结果可能与子宫内膜干/祖细胞的表达异常相关;IPO13可作为子宫内膜干/祖细胞的一个候选的标记。  相似文献   

18.
The engineering of vascular regeneration still involves barriers that need to be conquered. In the current study, a novel nanocomposite comprising of fibronectin (denoted as FN) and a small amount of silver nanoparticles (AgNP, ~15.1, ~30.2 or ~75.5 ppm) was developed and its biological function and biocompatibility in Wharton’s jelly-derived mesenchymal stem cells (MSCs) and rat models was investigated. The surface morphology as well as chemical composition for pure FN and the FN-AgNP nanocomposites incorporating various amounts of AgNP were firstly characterized by atomic force microscopy (AFM), UV-Visible spectroscopy (UV-Vis), and Fourier-transform infrared spectroscopy (FTIR). Among the nanocomposites, FN-AgNP with 30.2 ppm silver nanoparticles demonstrated the best biocompatibility as assessed through intracellular ROS production, proliferation of MSCs, and monocytes activation. The expression levels of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, were also examined. FN-AgNP 30.2 ppm significantly inhibited pro-inflammatory cytokine expression compared to other materials, indicating superior performance of anti-immune response. Mechanistically, FN-AgNP 30.2 ppm significantly induced greater expression of vascular endothelial growth factor (VEGF) and stromal-cell derived factor-1 alpha (SDF-1α) and promoted the migration of MSCs through matrix metalloproteinase (MMP) signaling pathway. Besides, in vitro and in vivo studies indicated that FN-AgNP 30.2 ppm stimulated greater protein expressions of CD31 and von Willebrand Factor (vWF) as well as facilitated better endothelialization capacity than other materials. Furthermore, the histological tissue examination revealed the lowest capsule formation and collagen deposition in rat subcutaneous implantation of FN-AgNP 30.2 ppm. In conclusion, FN-AgNP nanocomposites may facilitate the migration and proliferation of MSCs, induce endothelial cell differentiation, and attenuate immune response. These finding also suggests that FN-AgNP may be a potential anti-inflammatory surface modification strategy for vascular biomaterials.  相似文献   

19.
20.
When looking for the causes and treatments of infertility, much attention is paid to one of the reproductive tissues—the endometrium. Therefore, endometrial stem cells are an attractive target for infertility studies in women of unexplained origin. Menstrual blood stem cells (MenSCs) are morphologically and functionally similar to cells derived directly from the endometrium; with dual expression of mesenchymal and embryonic cell markers, they proliferate and regenerate better than bone marrow mesenchymal stem cells. In addition, menstrual blood stem cells are extracted in a non-invasive and painless manner. In our study, we analyzed the characteristics and the potential for decidualization of menstrual blood stem cells isolated from healthy volunteers and women diagnosed with infertility. We demonstrated that MenSCs express CD44, CD166, CD16, CD15, BMSC, CD56, CD13 and HLA-ABC surface markers, have proliferative properties, and after induction of menstrual stem cell differentiation into epithelial direction, expression of genes related to decidualization (PRL, ESR, IGFBP and FOXO1) and angiogenesis (HIF1, VEGFR2 and VEGFR3) increased. Additionally, the p53, p21, H3K27me3 and HyperAcH4 proteins’ expression increased during MenSCs decidualization, they secrete proteins that are involved in the regulation of the actin cytoskeleton, estrogen and relaxin signaling pathways and the management of inflammatory processes. Our findings reveal the potential use of MenSCs for the treatment of reproductive disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号