首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
邢辉  陈晓明  张宏泉 《佛山陶瓷》2004,14(12):33-35
寻找理想的支架材料是目前骨组织工程研究的热点。本文阐述了用于骨组织丁程支架材抖的天然生物衍生材料、聚合物类材料、陶瓷材料及其复合材料等的研究现状,分析了这些材料的优缺点,并展望了骨组织工程支架材料的发展趋势。  相似文献   

2.
纤维素具有良好的生物相容性和可降解性,在生物组织工程领域作为支架材料的研究近年来受到研究者的关注。文章介绍了组织工程支架的性能要求,以及纤维素、细菌纤维素用于组织工程支架的研究现状。针对组织工程支架的分子设计、纳米化趋势,提出了纳米纤维素纤维用于组织工程支架的设想。并综述了纳米纤维素纤维制备的最新研究进展,预测了未来纤维素组织工程支架的发展趋势及前景。  相似文献   

3.
The transplantation of ex vivo expanded limbal epithelial progenitor cells (LEPCs) on amniotic membrane or fibrin gel is an established therapeutic strategy to regenerate the damaged corneal surface in patients with limbal stem cell deficiency (LSCD), but the long-term success rate is restricted. A scaffold with niche-specific structure and extracellular matrix (ECM) composition might have the advantage to improve long-term clinical outcomes, in particular for patients with severe damage or complete loss of the limbal niche tissue structure. Therefore, we evaluated the decellularized human limbus (DHL) as a biomimetic scaffold for the transplantation of LEPCs. Corneoscleral tissue was decellularized by sodium deoxycholate and deoxyribonuclease I in the presence or absence of dextran. We evaluated the efficiency of decellularization and its effects on the ultrastructure and ECM composition of the human corneal limbus. The recellularization of these scaffolds was studied by plating cultured LEPCs and limbal melanocytes (LMs) or by allowing cells to migrate from the host tissue following a lamellar transplantation ex vivo. Our decellularization protocol rapidly and effectively removed cellular and nuclear material while preserving the native ECM composition. In vitro recellularization by LEPCs and LMs demonstrated the good biocompatibility of the DHL and intrastromal invasion of LEPCs. Ex vivo transplantation of DHL revealed complete epithelialization as well as melanocytic and stromal repopulation from the host tissue. Thus, the generated DHL scaffold could be a promising biological material as a carrier for the transplantation of LEPCs to treat LSCD.  相似文献   

4.
One of the most important challenges facing researchers in the field of regenerative medicine is to develop methods to introduce vascular networks into bioengineered tissues. Although cell scaffolds that slowly release angiogenic factors can promote post-transplantation angiogenesis, they cannot be used to construct thick tissues because of the time required for sufficient vascular network formation. Recently, the co-culture of graft tissue with vascular cells before transplantation has attracted attention as a way of promoting capillary angiogenesis. Although the co-cultured vascular cells can directly contribute to blood vessel formation within the tissue, a key objective that needs to be met is the construction of a continuous circulatory structure. Previously described strategies to reconstruct blood vessels include the culture of endothelial cells in a scaffold that contains microchannels or within the original vascular framework after decellularization of an entire organ. The technique, as developed by authors, involves the progressive stacking of three-layered cell sheets onto a vascular bed to induce the formation of a capillary network within the cell sheets. This approach enables the construction of thick, functional tissue of high cell density that can be transplanted by anastomosing its artery and vein (provided by the vascular bed) with host blood vessels.  相似文献   

5.
基于快速成型技术的组织工程支架制备进展   总被引:3,自引:0,他引:3  
介绍了组织工程支架的重要性和基本要求,综述了组织工程支架制备中的新技术:三雏打印技术、熔融沉积模型以及选择性激光烧结等三种快速成型技术的基本原理及应用情况,指出了各种技术的特点并对其应用前景进行了展望。  相似文献   

6.
利用聚羟基丁酸酯/聚羟基戊酸酯(PHBV)共混材料为基质,通过熔融纺丝、压片成型以及纤维熔结工艺,制得了组织工程用三维多孔支架。研究了PHBV共混材料的吸水率与溶胀比以及支架的熔结温度。结果表明:PHBV共混材料的吸水率较PHBV大为提高,有利于改善PHBV材料的亲水性。其溶胀比较低有助于保持组织工程支架的尺寸稳定性。PHBV共混物纤维的最佳熔结温度在130~140℃范围。采用压片成型/纤维熔结法可制得孔径在300~500μm之间、贯通性好的三维立体支架。降解实验表明:支架材料的降解会引起pH值的微弱下降,支架材料的降解速率较慢。  相似文献   

7.
热致相分离技术制备组织工程支架   总被引:3,自引:0,他引:3  
用生物可降解材料制备细胞生长支架是组织工程的关键技术之一,而热致相分离技术是制备生物可降解三维多孔支架的重要方法.综述了凝胶浇铸、热致凝胶化、乳化/冷冻干燥、固液相分离和液液相分离等几种相分离技术的原理及应用,并预测了相分离技术的应用前景.  相似文献   

8.
Cardiovascular diseases are the leading cause of global mortality. Over the past two decades, researchers have tried to provide novel solutions for end-stage heart failure to address cardiac transplantation hurdles such as donor organ shortage, chronic rejection, and life-long immunosuppression. Cardiac decellularized extracellular matrix (dECM) has been widely explored as a promising approach in tissue-regenerative medicine because of its remarkable similarity to the original tissue. Optimized decellularization protocols combining physical, chemical, and enzymatic agents have been developed to obtain the perfect balance between cell removal, ECM composition, and function maintenance. However, proper assessment of decellularized tissue composition is still needed before clinical translation. Recellularizing the acellular scaffold with organ-specific cells and evaluating the extent of cardiomyocyte repopulation is also challenging. This review aims to discuss the existing literature on decellularized cardiac scaffolds, especially on the advantages and methods of preparation, pointing out areas for improvement. Finally, an overview of the state of research regarding the application of cardiac dECM and future challenges in bioengineering a human heart suitable for transplantation is provided.  相似文献   

9.
采用可溶粒子造孔法结合冷等静压成型技术,模拟扁骨的结构,制备了一种新型层状结构的多孔磷酸钙骨水泥组织工程支架材料,并用XRD和SEM等手段对其组成和结构进行了表征,用万能材料试验机测定了支架的抗压强度.结果表明,材料由致密层和多孔层构成,具有与扁骨类似的结构.其中致密层起到了增强作用,可以显著提高支架的强度.支架多孔层的孔隙率(77.26±1.99)%,孔隙直径在100~400 μm,决定于可溶盐晶粒的大小;致密层的孔隙率(20.78±0.56)%,主要是磷酸钙骨水泥固化过程中产生的微孔.  相似文献   

10.
Long urethral strictures are often treated with autologous genital skin and buccal mucosa grafts; however, risk of hair ingrowth and donor site morbidity, restrict their application. To overcome this, we introduced a tissue-engineered human urethra comprising adipose-derived stem cell (ASC)-based self-assembled scaffold, human urothelial cells (UCs) and smooth muscle cells (SMCs). ASCs were cultured with ascorbic acid to stimulate extracellular matrix (ECM) production. The scaffold (ECM) was stained with collagen type-I antibody and the thickness was measured under a confocal microscope. Results showed that the thickest scaffold (28.06 ± 0.59 μm) was achieved with 3 × 104 cells/cm2 seeding density, 100 μg/mL ascorbic acid concentration under hypoxic and dynamic culture condition. The biocompatibility assessment showed that UCs and SMCs seeded on the scaffold could proliferate and maintain the expression of their markers (CK7, CK20, UPIa, and UPII) and (α-SMA, MHC and Smootheline), respectively, after 14 days of in vitro culture. ECM gene expression analysis showed that the ASC and dermal fibroblast-based scaffolds (control) were comparable. The ASC-based scaffold can be handled and removed from the plate. This suggests that multiple layers of scaffold can be stacked to form the urothelium (seeded with UCs), submucosal layer (ASCs only), and smooth muscle layer (seeded with SMCs) and has the potential to be developed into a fully functional human urethra for urethral reconstructive surgeries.  相似文献   

11.
The musculoskeletal system is a vital body system that protects internal organs, supports locomotion, and maintains homeostatic function. Unfortunately, musculoskeletal disorders are the leading cause of disability worldwide. Although implant surgeries using autografts, allografts, and xenografts have been conducted, several adverse effects, including donor site morbidity and immunoreaction, exist. To overcome these limitations, various biomedical engineering approaches have been proposed based on an understanding of the complexity of human musculoskeletal tissue. In this review, the leading edge of musculoskeletal tissue engineering using 3D bioprinting technology and musculoskeletal tissue-derived decellularized extracellular matrix bioink is described. In particular, studies on in vivo regeneration and in vitro modeling of musculoskeletal tissue have been focused on. Lastly, the current breakthroughs, limitations, and future perspectives are described.  相似文献   

12.
Tissue engineering is a multidisciplinary field focused on in vitro reconstruction of mammalian tissues. In order to allow a similar three-dimensional organization of in vitro cultured cells, biocompatible scaffolds are needed. This need has provided immense momentum for research on “smart scaffolds” for use in cell culture. One of the most promising materials for tissue engineering and regenerative medicine is a hyaluronan derivative: a benzyl ester of hyaluronan (HYAFF®). HYAFF® can be processed to obtain several types of devices such as tubes, membranes, non-woven fabrics, gauzes, and sponges. All these scaffolds are highly biocompatible. In the human body they do not elicit any adverse reactions and are resorbed by the host tissues. Human hepatocytes, dermal fibroblasts and keratinocytes, chondrocytes, Schwann cells, bone marrow derived mesenchymal stem cells and adipose tissue derived mesenchymal stem cells have been successfully cultured in these meshes. The same scaffolds, in tube meshes, has been applied for vascular tissue engineering that has emerged as a promising technology for the design of an ideal, responsive, living conduit with properties similar to that of native tissue.  相似文献   

13.
Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits) and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation.  相似文献   

14.
Abstract

Many people, especially old and middle-aged, suffer from pain and disabilities caused by cartilage degradation. There are many surgical methods for cartilage treatment, however, none of them have shown acceptable results in long-term. Tissue engineering would be an acceptable approach for cartilage treatment. This includes cells, a carrier such as a matrix scaffold and signaling molecule. An ideal scaffold for cartilage tissue engineering should meet some requirements includes biocompatibility, biodegradability, and sufficient mechanical characteristic. While there are many suitable scaffolds made by natural and synthesis polymers, alginate- a natural polymer- has received good attention. Alginate offers many advantages for cartilage treatment; it has great potential in having tunable mechanical properties and easy manufacturing process. In the present paper, focusing on alginate as main scaffold constructive component, different studies on alginate based scaffolds in the form of physically, chemically and biologically crosslinked hydrogel, sponge, fiber, micro/nano particles and 3?D printed for articular cartilage tissue engineering are discussed and reviewed.  相似文献   

15.
Tissue engineering has attracted significant attention since the 1980s, and the applications of tissue engineering have been expanding. To produce a cell-dense tissue, cell sheet technology has been studied as a promising strategy. Fundamental techniques involving tissue engineering are mainly introduced in this review. First, the technologies to fabricate a cell sheet were reviewed. Although temperature-responsive polymer-based technique was a trigger to establish and spread cell sheet technology, other methodologies for cell sheet fabrication have also been reported. Second, the methods to improve the function of the cell sheet were investigated. Adding electrical and mechanical stimulation on muscle-type cells, building 3D structures, and co-culturing with other cell species can be possible strategies for imitating the physiological situation under in vitro conditions, resulting in improved functions. Finally, culture methods to promote vasculogenesis in the layered cell sheets were introduced with in vivo, ex vivo, and in vitro bioreactors. We believe the present review that shows and compares the fundamental technologies and recent advances for cell-sheet-based tissue engineering should promote further development of tissue engineering. The development of cell sheet technology should promote many bioengineering applications.  相似文献   

16.
Gelatin has excellent biological properties, but its poor physical properties are a major obstacle to its use as a biomaterial ink. These disadvantages not only worsen the printability of gelatin biomaterial ink, but also reduce the dimensional stability of its 3D scaffolds and limit its application in the tissue engineering field. Herein, biodegradable suture fibers were added into a gelatin biomaterial ink to improve the printability, mechanical strength, and dimensional stability of the 3D printed scaffolds. The suture fiber reinforced gelatin 3D scaffolds were fabricated using the thermo-responsive properties of gelatin under optimized 3D printing conditions (−10 °C cryogenic plate, 40–80 kPa pneumatic pressure, and 9 mm/s printing speed), and were crosslinked using EDC/NHS to maintain their 3D structures. Scanning electron microscopy images revealed that the morphologies of the 3D printed scaffolds maintained their 3D structure after crosslinking. The addition of 0.5% (w/v) of suture fibers increased the printing accuracy of the 3D printed scaffolds to 97%. The suture fibers also increased the mechanical strength of the 3D printed scaffolds by up to 6-fold, and the degradation rate could be controlled by the suture fiber content. In in vitro cell studies, DNA assay results showed that human dermal fibroblasts’ proliferation rate of a 3D printed scaffold containing 0.5% suture fiber was 10% higher than that of a 3D printed scaffold without suture fibers after 14 days of culture. Interestingly, the supplement of suture fibers into gelatin biomaterial ink was able to minimize the cell-mediated contraction of the cell cultured 3D scaffolds over the cell culture period. These results show that advanced biomaterial inks can be developed by supplementing biodegradable fibers to improve the poor physical properties of natural polymer-based biomaterial inks.  相似文献   

17.
Bioengineering platforms that combine cell/tissue specific transport and signaling with precise control of culture conditions and multiparametric insights into the cell function are critical to our efforts to study tissue development, regeneration, and disease under conditions that predict the human in vivo context. Because living cells respond to the entire context of their environment – in vivo and in vitro, under normal and pathological conditions – the biological foundation of our bioengineering designs that is often described as the “biomimetic paradigm” is critical for unlocking the biological potential of the cells. This brief review focuses on some of the key principles for designing and using biologically inspired engineering platforms. Four examples are used to illustrate the designs and applications of biomimetic platforms.  相似文献   

18.
(1) Background: Vascularization remains a critical challenge in bone tissue engineering. The objective of this study was to prevascularize calcium phosphate cement (CPC) scaffold by co-culturing human periodontal ligament stem cells (hPDLSCs) and human umbilical vein endothelial cells (hUVECs) for the first time; (2) Methods: hPDLSCs and/or hUVECs were seeded on CPC scaffolds. Three groups were tested: (i) hUVEC group (hUVECs on CPC); (ii) hPDLSC group (hPDLSCs on CPC); (iii) co-culture group (hPDLSCs + hUVECs on CPC). Osteogenic differentiation, bone mineral synthesis, and microcapillary-like structures were evaluated; (3) Results: Angiogenic gene expressions of co-culture group were 6–9 fold those of monoculture. vWF expression of co-culture group was 3 times lower than hUVEC-monoculture group. Osteogenic expressions of co-culture group were 2–3 folds those of the hPDLSC-monoculture group. ALP activity and bone mineral synthesis of co-culture were much higher than hPDLSC-monoculture group. Co-culture group formed capillary-like structures at 14–21 days. Vessel length and junction numbers increased with time; (4) Conclusions: The hUVECs + hPDLSCs co-culture on CPC scaffold achieved excellent osteogenic and angiogenic capability in vitro for the first time, generating prevascularized networks. The hPDLSCs + hUVECs co-culture had much better osteogenesis and angiogenesis than monoculture. CPC scaffolds prevacularized via hPDLSCs + hUVECs are promising for dental, craniofacial, and orthopedic applications.  相似文献   

19.
This study presents a set of vibrational characterizations on a nanogel-cross-linked porous freeze-dried gel (NanoCliP-FD gel) scaffold for tissue engineering and regenerative therapy. This scaffold is designed for the in vitro culture of high-quality cartilage tissue to be then transplanted in vivo to enable recovery from congenital malformations in the maxillofacial area or crippling jaw disease. The three-dimensional scaffold for in-plate culture is designed with interface chemistry capable of stimulating cartilage formation and maintaining its structure through counteracting the dedifferentiation of mesenchymal stem cells (MSCs) during the formation of cartilage tissue. The developed interface chemistry enabled high efficiency in both growth rate and tissue quality, thus satisfying the requirements of large volumes, high matrix quality, and superior mechanical properties needed in cartilage transplants. We characterized the cartilage tissue in vitro grown on a NanoCliP-FD gel scaffold by human periodontal ligament-derived stem cells (a type of MSC) with cartilage grown by the same cells and under the same conditions on a conventional (porous) atelocollagen scaffold. The cartilage tissues produced by the MSCs on different scaffolds were comparatively evaluated by immunohistochemical and spectroscopic analyses. Cartilage differentiation occurred at a higher rate when MSCs were cultured on the NanoCliP-FD gel scaffold compared to the atelocollagen scaffold, and produced a tissue richer in cartilage matrix. In situ spectroscopic analyses revealed the cell/scaffold interactive mechanisms by which the NanoCliP-FD gel scaffold stimulated such increased efficiency in cartilage matrix formation. In addition to demonstrating the high potential of human periodontal ligament-derived stem cell cultures on NanoCliP-FD gel scaffolds in regenerative cartilage therapy, the present study also highlights the novelty of Raman spectroscopy as a non-destructive method for the concurrent evaluation of matrix quality and cell metabolic response. In situ Raman analyses on living cells unveiled for the first time the underlying physiological mechanisms behind such improved chondrocyte performance.  相似文献   

20.
Summary: Biomimetic scaffolds are appealing products for the repair of bone defects using tissue engineering strategies. The present study prepared novel biomimetic composite scaffolds with similar composite to natural bone using bioactive glass, collagen, hyaluronic acid, and phosphatidylserine. The microstructure, swelling ratio, biodegradability, and biomineralization characteristic of the composite scaffolds with and without hyaluronic acid and phosphatidylserine were compared and analyzed by SEM/EDAX, XRD, and FTIR techniques and in vitro test, and the properties can be influenced by 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide (EDC)/N‐hydroxysuccinimide (NHS) crosslinking. The optimized properties of the crosslinked composite scaffolds observed in this study show the possibility of their use of bioactive and bioresorbable scaffolds in bone tissue engineering.

SEM micrographs of BG‐COL‐HYA‐PS composite scaffolds after immersion in SBF for 1 d.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号