首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A steady-state model has been developed to simulate the North Carolina State University pilot-scale fluidized bed coal gasification reactor. The model involves instantaneous devolatilization of coal at the top of the gasifier (freeboard region) and char combustion and gasification in the fluidized bed. A two-phase (emulsion-dilute gas) representation of the fluidized bed incorporates the phenomena of jetting, bubbling, slugging, and mass and heat transfer between phases, and enables the prediction of individual species flow rates and temperature profiles within the bed. The model has been successfully used to simulate the gasification of a devolatilized Western Kentucky bituminous coal and a New Mexico subbituminous coal and to predict effects of various operating parameters on key gasifier performance variables.  相似文献   

2.
The two-phase combustion model for biomass char combustion in a riser of a dual fluidized bed gasification unit that has been presented in part I is validated using the data obtained from the 8 MWth dual fluidized bed reactor at Guessing/Austria. The model is capable of calculating the average temperatures in all zones, the gas phase composition, solid hold up, char feed rates and air ratio. The model predictions for the temperature profile along the riser and for the exiting gas composition are in good agreement with the measured values. The simulation results show that the residual char from the gasifier is only partly converted in the riser for char particles larger than 0.6 mm. Un-combusted char is circulated back into the gasification reactor. Parameter variations show that the exact location where additional liquid fuels are introduced in the middle zone of the riser does not affect the global behaviour of the combustion reactor. Based on the simulation results it is proposed that external supply of char (additional) may be a very effective method for reducing producer gas recycling to the riser, which is currently necessary to obtain the desired gasification temperatures.  相似文献   

3.
A one-dimensional steady state model has been developed for the combustion reactor of a dual fluidized bed biomass steam gasification system. The combustion reactor is operated as fast fluidized bed (riser) with staged air introduction (bottom, primary and secondary air). The main fuel i.e., residual biomass char (from the gasifier), is introduced together with the circulating bed material at the bottom of the riser. The riser is divided into two zones: bottom zone (modelled according to modified two phase theory) and upper zone (modelled with core-annulus approach). The model consists of sub-model for bed hydrodynamic, conversion and conservation. Biomass char is assumed to be a homogeneous matrix of C, H and O and is modelled as partially volatile fuel. The exit gas composition and the temperature profile predicted by the model are in good agreement with the measured value.  相似文献   

4.
The time constant of the intensive char circulating between the oxidizing zone and the reducing zone within the gasifier is of similar order of magnitude to the time constant of the dynamic change in surface oxide complex. The CO2 gasification of char particles within the experimental fluidized bed gasifier are analyzed by a new model taking account of the dynamics of the surface oxide at surfaces of char particles.  相似文献   

5.
Three Canadian coals of different rank were gasified with air‐steam mixtures in a 0.1 m diameter spouted bed reactor at pressures to 292 kPa, average bed temperatures varying between 840 and 960°C, and steam‐to‐coal feed ratios between 0.0 and 2.88. In order to analyze gasifier performance and correlate data, a three‐stage model has been developed incorporating instantaneous devolatilization of coal, instantaneous combustion of carbon at the bottom of the bed, and steam/carbon gasification and water gas shift reaction in a single well mixed isothermal stage. The capture of H2S by limestone sorbent injection is also treated. The effects of various assumptions and model parameters on the predictions were investigated. The present model indicates that gasifier performance is mainly controlled by the fast coal devolatilization and char combustion reactions, and the contribution to carbon conversion of the slow char gasification reactions is comparatively small. The incorporation of tar decomposition into the model provides significantly closer predictions of experimental gas composition than is obtained otherwise.  相似文献   

6.
The gasification of char in a steam-oxygen fluidized bed was studied. The char was assumed to be composed of base carbon and ash. The gaseous compounds found were limited to CO, CO2, H2, H2O, O2 and CH4. As the oxygen and hydrogen were assumed not to co-exist, the bed was divided into a shallow combustion zone where the carbon combustion would take place and a gasification zone where no oxygen would be found. A lumped model for the gasification zone was formulated. The thickness of the combustion zone was assumed to be negligible compared to the total height of the reactor. All chemical changes in the gasification zone were described by three reactions: steam gasification, carbon hydrogasification and water-gas shift reaction. The gases and the solids in the gasification zone were assumed to be at uniform temperature. From the results of the model calculations it was concluded that one should use the fairly complicated empirical kinetic expressions developed by Johnson for reliability over a wide range of pressures and residence times. The effects of the reactor pressure, the char residence time and the amount of oxygen in the feed on the gasifier performance were analysed.  相似文献   

7.
射流预氧化流化床气化炉中黏结性煤的反应特性   总被引:1,自引:0,他引:1       下载免费PDF全文
王芳  曾玺  孙延林  许光文  王永刚 《化工学报》2015,66(6):2212-2219
针对现有流化床气化技术难以处理黏结性、高含灰洗中煤的问题, 中国科学院过程工程研究所开发了可处理黏结性碎煤的射流预氧化流化床气化技术, 该技术利用含氧气体将煤颗粒快速喷射送入预氧化区内破除其黏结性, 形成的半焦进入气化区内发生气化反应, 进而实现对黏结性煤的利用。本工作采用小型流化床射流预氧化反应装置研究较强黏结性煤预氧化破黏后的产物分布、半焦结构与活性变化, 并考察气化操作条件(温度、当量空气系数、水煤比等)对半焦气化行为的影响。结果表明:当预氧化区温度为950℃、当量空气系数为0.13时, 黏结性煤生成半焦的孔结构和气化活性较好;当半焦气化区温度为1000℃、当量空气系数为0.17、水蒸气与煤质量比为0.09时, 生成燃气的品质较好, 而且生成焦油中的轻质组分最多, 有利于焦油被进一步脱除。研究结果可为射流预氧化气化技术的设计放大提供基础数据。  相似文献   

8.
S.J. Mangena  J.R. Bunt  G. Baker 《Fuel》2011,90(1):167-173
The Sasol-Lurgi fixed bed dry bottom gasification technology has the biggest market share in the world with 101 gasifiers in operation. To be able to further improve the technology and also to optimise the operating plants, it is important that the fundamentals of the process are understood. The main objective of this study was to determine the reaction zones occurring in the Sasol-Lurgi fixed bed dry bottom (S-L FBDB) gasifier operating on North Dakota lignite. A Turn-Out sampling method and subsequent chemical analyses of the gasifier fuel bed samples was used to determine the reaction zones occurring in the commercial MK IV, S-L FBDB gasifier operating on North Dakota lignite. The reaction zones were further compared with the same reactor operating on bituminous coal.Based on the results obtained from this study it was found that about two thirds of the gasifier volume was used for drying and de-volatilising the lignite thus leaving only about a third of the reactor volume for gasification and combustion. Nonetheless, due to the high reactivity of the lignite, the char was consumed within a third of the remaining gasifier volume. Clear overlaps between the reaction zones were observed in the gasifiers thus confirming the gradual transition from one reaction zone to another as reported in literature. Due to the high moisture content in the lignite, the pyrolysis zone in the gasifiers operating on North Dakota lignite occurred lower/deeper in the gasifier fuel bed as compared to the same gasifier operating on South African bituminous coal from the Highveld coalfield. All the other reaction zones in the gasifier operating on bituminous coal were also higher in the bed compared to the lignite operation. This can therefore explain the higher gas outlet temperatures for the S-L FBDB gasifiers operating on higher rank coals when compared to the gasifiers operating on lignite. The fact that the entire reactor volume was utilized for drying, de-volatilisation, gasification and combustion with carbon conversion of >98% makes the S-L FBDB gasifier very suitable for lignite gasification.  相似文献   

9.
Gasification of high ash India coal has been studied in a laboratory-scale, atmospheric fluidized bed gasifier using steam and air as fluidizing media. A one-dimensional analysis of the gasification process has been presented incorporating a two-phase theory of fluidization, char gasification, volatile release and an overall system energy balance. Results are presented on the variation of product gas composiiton, bed temperature, calorific value and carbon conversion with oxygen and steam feed. Comparison between predicted and experimental data has been presented, and the predictions show similar trends as in the experiments.  相似文献   

10.
《Fuel》2007,86(1-2):244-255
The dual fluidised bed gasification technology is prospective because it produces high caloric product gas free of N2 dilution even when air is used to generate the gasification-required endothermic heat via in situ combustion. This study is devoted to providing the necessary process fundamentals for development of a bubbling fluidized bed (BFB) biomass gasifier coupled to a pneumatic transported riser (PTR) char combustor. In a steam-blown fluidized bed of silica sand, gasification of 1.0 g biomass, a kind of dried coffee grounds containing about 10 wt.% water, in batch format clarified first the characteristics of fuel pyrolysis (at 1073 K) under the conditions simulating that prevailing in the gasifier intended to develop. The result shown that via pyrolysis more than 60% of fuel carbon and up to 75% of fuel mass could be converted into product gas, while the simultaneously formed char was about 22% of fuel mass. With all of these data as the known input, a process simulation using the software package ASPEN then revealed that the considered dual bed gasification plant, i.e. a BFB gasifier + a PTR combustor, is able to sustain its independent heat and mass balances to allow cold gas efficiencies higher than 75%, given that the fuel has suitable water contents and the heat carried with the product gas from the gasifier and with the flue gas from the char combustor is efficiently recovered inside the plant. In a dual fluidized bed pilot gasification facility simulating the gasification plant for development, the article finally demonstrated experimentally that the necessary reaction time for fuel, i.e. the explicit residence time of fuel particles inside the BFB gasifier computed according to a plug granular flow assumption, can be lower than 160 s. The results shown that varying the residence time from 160 to 1200 s only slightly increased the gasification efficiency, but the reaction time available in the PTR, say, about 3 s in our case, was too short to assure the finish even of fuel pyrolysis.  相似文献   

11.
串行流化床煤气化试验   总被引:3,自引:3,他引:0  
吴家桦  沈来宏  肖军  卢海勇  王雷 《化工学报》2008,59(8):2103-2110
针对串行流化床煤气化技术特点,以水蒸气为气化剂,在串行流化床试验装置上进行煤气化特性的试验研究,考察了气化反应器温度、蒸汽煤比对煤气组成、热值、冷煤气效率和碳转化率的影响。结果表明,燃烧反应器内燃烧烟气不会串混至气化反应器,该煤气化技术能够稳定连续地从气化反应器获得不含N2的高品质合成气。随着气化反应器温度的升高、蒸汽煤比的增加,煤气热值和冷煤气效率均会提高,但对碳转化率影响有所不同。在试验阶段获得的最高煤气热值为6.9 MJ•m-3,冷煤气效率为68%,碳转化率为92%。  相似文献   

12.
我国煤气化技术的特点及应用   总被引:1,自引:0,他引:1  
刘卫平 《化肥设计》2008,46(1):11-16
介绍了我国煤气化技术的发展现状;论述了固定床间歇气化技术、恩德炉粉煤流化床气化技术、灰熔聚煤气化技术、壳牌煤气化技术、德士古水煤浆加压气化技术、四喷嘴对置式水煤浆气化技术等煤气化技术的工艺特点、技术优势和不足;针对煤气化技术的选择提出了相关注意事项。  相似文献   

13.
Gasification is one potential way to use sewage sludge as renewable energy and solve the environmental problems caused by the huge amount of sewage sludge. In this paper, a three-dimensional Computational Fluid Dynamics (CFD) model has been developed to simulate the sewage sludge gasification process in a fluidized bed. The model describes the complex physical and chemical phenomena in the gasifier including turbulent flow, heat and mass transfer, and chemical reactions. The model is based on the Eulerian-Lagrangian concept using the nonpremixed combustion modeling approach. In terms of the CFD software FLUENT, which represents a powerful tool for gasifier analysis, the simulations provide detailed information on the gas products and temperature distribution in the gasifier. The model sensitivity is analyzed by performing the model in a laboratory-scale fluidized bed in the literature, and the model validation is carried out by comparing with experimental data from the literature. Results show that reasonably good agreement was achieved. Effects of temperature and Equivalence Ratio (ER) on the quality of product syngas (H2 + CO) are also studied.  相似文献   

14.
A comparison of dual fluidized bed gasification of biomass with and without selective transport of CO2 from the gasification to the combustion reactor is presented. The dual fluidized bed technology provides the necessary heat for steam gasification by circulating hot bed material that is heated in a separate fluidized bed reactor by combustion of residual biomass char. The hydrogen content in producer gas of gasifiers based on this concept is about 40 vol% (dry basis). Addition of carbonates to the bed material and adequate adjustment of operation temperatures in the reactors allow selective transport of CO2 (absorption enhanced reforming—AER concept). Thus, hydrogen contents of up to 75 vol% (dry basis) can be achieved. Experimental data from a 120 kWFuel input pilot plant as well as thermodynamic data are used to determine the mass- and energy-balances. Carbon, hydrogen, oxygen, and energy balances for both concepts are presented and discussed.  相似文献   

15.
黏结性碎煤射流预氧化破黏与流化   总被引:1,自引:1,他引:0       下载免费PDF全文
具有黏结性(黏结性指数10~30)并高灰的劣质煤,如洗中煤难于适应于现有气化技术,但焦化等行业对这些煤的气化高价值利用具有极大的需求。中国科学院过程工程研究所提出了黏结性煤射流预氧化流化床气化技术,采用含氧气体向流化床气化炉稀相区喷射供料,有效破除煤的黏结性,同时强化气固接触和气化反应,实现对黏结性劣质煤的高效转化。采用小型射流预氧化流化床反应器,研究了黏结性指数为20的一种煤通过射流预氧化的破黏与实现流化的效果。分别考察了射流气过量空气系数(ER)和氧浓度(CO2)、加热炉设定温度(T)对预氧化破黏及煤颗粒流化的影响效果,分析了反应器内射流区的温度分布与生成气组成随时间的变化规律,并对预氧化后的半焦进行了电镜观测和气化反应活性测试及傅里叶红外分析。结果表明,在流化床中通过射流预氧化有效破黏、实现黏结性煤颗粒流化的工艺条件为:T > 950℃,CO2=21%,ER > 0.1。在有效破黏的条件下射流区内的温度变化平稳,生成气中H2与CO含量较低,波动较小,而结焦条件下射流区内温度逐渐下降,生成气中H2与CO含量增加。经历结焦的半焦表面生成了黏结性物质,而经过预氧化成功破黏后的半焦其表面大部分官能团消失。  相似文献   

16.
The total carbon conversion of conventional fluidized bed gasifier is relatively low (<90%) mainly because of carbon loss in fly-ash. In this paper, a new concept of integrated coal gasification—fluidized bed+entrained flow is introduced. Within this process, large partition of coal with higher reactivity is converted in an ash agglomerating fluidized bed reactor under moderate temperature (~1000 °C). The remaining small partition of coal (fly-ash) with lower reactivity is converted in a small integrated entrained flow gasifier under higher temperature (1200–1400 °C). Low carbon content ash is withdrawn in dry mode by ash agglomerating, with no need to be melted. Preliminary experimental results show that the whole system can be operated steadily, total carbon conversion reaches >95%, efficient gas (CO+H2) concentration is 78–82%. Heat exchange between two reactors has been realized, the high temperature gas from entrained flow gasifier can be cooled, and in the mean time the temperature of fluidized bed nearly keeps constant. The high-temperature ash from entrained flow gasifier can be cooled by the char in dense phase of the fluidized bed and then withdrawn in agglomerating mode. All these results prove the concept correct and feasible.  相似文献   

17.
文章介绍了一种循环流化床热-电-气-焦油多联产技术,该技术将煤的燃烧和气化有机结合起来。对于在浙江大学1MW燃气蒸汽多联产试验装置基础上建设的12MW循环流化床热电气焦油多联产示范装置,着重考察不同干馏温度对其产出焦油的影响。实验结果表明,流化床的气化炉温度对焦油的产率、灰分、水分、软化点、甲苯不溶物的含量等都有一定程度的影响。由于焦油存在二次热解,从而气化炉温度过高,将导致焦油的含量降低,在550~600℃时达到焦油含量最高;通过气化炉温度对焦油品质和组分的考察,得出循环流化床的气化炉温度应该控制在550℃左右时,焦油的品质和含量相对达到最优。  相似文献   

18.
A two-stage pressurized fluidized-bed gasification process has been developed to produce low-heating value gases from coal char. The reactor was 0.075 m id. and 1.4 m long, and gasification experiments were conducted under pressures up to 790 kPa and at temperatures up to 1323 K. A partition disc was used to divide the fluidized bed into two stages, using the first stage as a partial combuster and gasifier and the second stage as a gasifier. The disc was designed to control compositions of coal char particles in both stages so that the heat required for the endothermic gasification reaction in the second stage can be provided by the heat of combustion in the first

For conditions examined here, the disc with an opening ratio of 40° was found to give optimum distribution of the char particles in both stages without ash agglomeration. It was also shown that all oxygen gas was completely consumed within the first stage

The heating value of the product gas increased with the char feed rale. However, there may be an oplimum Teed ratio of char and sand-particles since the higher char feed rate causes more frequent ash agglomeration as well as less carbon conversion  相似文献   

19.
流化床煤气化技术的研究进展   总被引:5,自引:3,他引:2  
屈利娟 《煤炭转化》2007,30(2):81-85
结合流化床煤气化过程原理和循环流化床反应器开发应用状况,综述了流化床煤气化技术的进展,分析比较了目前广泛应用的3种煤气化流化床:鼓泡流化床,循环流化床及增压流化床的工艺及特点,并对工业上应用的典型的煤气化流化床(高温温克勒(HTW)及灰熔聚气化)的气化工艺流程具有的优势和存在的问题进行了较为详细的分析,并概括了流化床煤气化技术的发展趋势及应用前景.  相似文献   

20.
煤气化过程的模型和模拟与优化操作   总被引:5,自引:2,他引:5  
项友谦 《煤炭转化》2002,25(2):60-63,90
介绍了煤气化过程的模型和煤气化过程采用机理模型的理由,固定床煤气化过程机理模型的建立以及模拟计算的结果,并探讨了固定床水煤气化炉和流化床水煤气炉制气过程优化操作参数的确定。开发的数学模型已用于制气炉的模拟计算,与实测数据比较符合,由气化过程的数学模拟气化过程不同条件下各种参数的变化规律,进而可得出气化过程的优化操作条件,其确定过程比试验法安全,省时,省料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号