首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative reactions catalyzed by Cytochrome P450 enzymes (CYPs), which constitute the most relevant group of drug-metabolizing enzymes, are enabled by their redox partner Cytochrome P450 reductase (CPR). Both proteins are anchored to the membrane of the endoplasmic reticulum and the CPR undergoes a conformational change in order to interact with the respective CYP and transfer electrons. Here, we conducted over 22 microseconds of molecular dynamics (MD) simulations in combination with protein–protein docking to investigate the conformational changes necessary for the formation of the CPR–CYP complex. While some structural features of the CPR and the CPR–CYP2D6 complex that we highlighted confirmed previous observations, our simulations revealed additional mechanisms for the conformational transition of the CPR. Unbiased simulations exposed a movement of the whole protein relative to the membrane, potentially to facilitate interactions with its diverse set of redox partners. Further, we present a structural mechanism for the susceptibility of the CPR to different redox states based on the flip of a glycine residue disrupting the local interaction network that maintains inter-domain proximity. Simulations of the CPR–CYP2D6 complex pointed toward an additional interaction surface of the FAD domain and the proximal side of CYP2D6. Altogether, this study provides novel structural insight into the mechanism of CPR–CYP interactions and underlying conformational changes, improving our understanding of this complex machinery relevant for drug metabolism.  相似文献   

2.
Cytochrome P450s(CYPs) are ubiquitously found in all kingdoms of life, playing important role in various biosynthetic pathways as well as degradative pathways; accordingly find applications in a vast variety of areas from organic synthesis and drug metabolite production to modification of biomaterials and bioremediation.Significantly, CYPs catalyze chemically challenging C—H and C—C activation reactions using a reactive high-valent iron-oxo intermediate generated upon dioxygen activation at their heme center,while the other oxygen atom is reduced to the level of water by electrons provided through a reductase partner protein.Self-sufficient CYPs, encoding their heme domain and reductase protein in a single polypeptide, facilitate increased catalytic efficiency and render a less complicated system to work with.The self-sufficient CYP enzyme from CYP102A family(CYP102A1, BM3) is among the earliest and most-investigated model enzymes for mechanistic and structural studies as well as for biotechnological applications.An increasing number of self-sufficient CYPs from the same CYP102 family and from other families have also been reported in last decade.In this review, we introduce chemistry and biology of CYPs, followed by an overview of the characteristics of self-sufficient CYPs and representative reactions.Enzyme engineering efforts leading to novel self-sufficient CYP variants that can catalyze synthetically useful natural and non-natural(nature-mimicking) reactions are highlighted.Lastly, the strategy and efforts that aim to circumvent the challenges for improved thermostability, regio-and enantioselectivity,and total turnover number; associated with practical use of self-sufficient CYPs are reviewed.  相似文献   

3.
Cytochrome P450s are heme-thiolate enzymes that participate in carbon source assimilation, natural compound biosynthesis and xenobiotic metabolism in all kingdoms of life. P450s can catalyze various reactions by using a wide range of organic compounds, thus exhibiting great potential in biotechnological applications. The catalytic reactions of P450s are driven by electron equivalents that are sourced from pyridine nucleotides and delivered by cognate or matching redox partners (RPs). The electron transfer (ET) route from RPs to P450s involves one or more redox center-containing domains. As the rate of ET is one of the main determinants of P450 efficacy, an in-depth understanding of the P450 ET pathway should increase our knowledge of these important enzymes and benefit their further applications. Here, the various P450 RP systems along with current understanding of their ET routes will be reviewed. Notably, state-of-the-art structural studies of the two main types of self-sufficient P450 will also be summarized.  相似文献   

4.
Enzymes that catalyze the terminal hydroxylation of alkanes could be used to produce more valuable chemicals from hydrocarbons. Cytochrome P450 BM3 from Bacillus megaterium hydroxylates medium‐chain fatty acids at subterminal positions at high rates. To engineer BM3 for terminal alkane hydroxylation, we performed saturation mutagenesis at selected active‐site residues of a BM3 variant that hydroxylates alkanes. Recombination of beneficial mutations generated a library of BM3 mutants that hydroxylate linear alkanes with a wide range of regioselectivities. Mutant 77‐9H exhibits 52% selectivity for the terminal position of octane. This regioselectivity is octane‐specific and does not transfer to other substrates, including shorter and longer hydrocarbons or fatty acids. These results show that BM3 can be readily molded for regioselective oxidation.  相似文献   

5.
The multidomain, catalytically self‐sufficient cytochrome P450 BM‐3 from Bacillus megaterium (P450BM3) constitutes a versatile enzyme for the oxyfunctionalization of organic molecules and natural products. However, the limited stability of the diflavin reductase domain limits the utility of this enzyme for synthetic applications. In this work, a consensus‐guided mutagenesis approach was applied to enhance the thermal stability of the reductase domain of P450BM3. Upon phylogenetic analysis of a set of distantly related P450s (>38 % identity), a total of 14 amino acid substitutions were identified and evaluated in terms of their stabilizing effects relative to the wild‐type reductase domain. Recombination of the six most stabilizing mutations generated two thermostable variants featuring up to tenfold longer half‐lives at 50 °C and increased catalytic performance at elevated temperatures. Further characterization of the engineered P450BM3 variants indicated that the introduced mutations increased the thermal stability of the FAD‐binding domain and that the optimal temperature (Topt) of the enzyme had shifted from 25 to 40 °C. This work demonstrates the effectiveness of consensus mutagenesis for enhancing the stability of the reductase component of a multidomain P450. The stabilized P450BM3 variants developed here could potentially provide more robust scaffolds for the engineering of oxidation biocatalysts.  相似文献   

6.
To bring out the potential of wild-type cytochrome P450s, we have developed a series of “decoy molecules” to change their high substrate specificity without any mutagenesis. Decoy molecules are inert dummy substrates with structures that are very similar to those of natural substrates. The decoy molecules force long-alkyl-chain fatty acid hydroxylases (P450BSβ, P450SPα, and P450BM3) to generate the active species and to catalyze oxidation of various substrates other than fatty acids. Interestingly, the catalytic activity was highly dependent on the structure of decoy molecules. Furthermore, the enantioselectivity of reactions catalyzed by P450BSβ and P450SPα was also dependent on the structure of decoy molecules. The decoy molecule system allows us to control reactions catalyzed by wild-type enzymes by designing decoy molecules.  相似文献   

7.
Cytochrome P450 monooxygenases (CYPs) of the CYP153 family catalyse terminal hydroxylation of n‐alkanes. Alkane hydroxylating mutants of self‐sufficient CYP102A1 have also been described. We evaluated two CYP153s (a three‐component system and a fused self‐sufficient CYP), wild‐type CYP102A1 and nine CYP102A1 mutants, for the conversion of three cycloalkanes (C6, C7 and C8) and three n‐alkanes (C6, C8 and C10) using whole cells (WCs) and crude cell‐free extracts (CFEs). The aim was to identify substrate–enzyme combinations that give high product titres and space‐time yields (STYs). Comparisons were made using total turnover numbers (TTNs) and turnover frequencies (TOFs) to normalize for CYP expression. Reactions were carried out using high enzyme and substrate concentrations compatible with high STYs. Under these conditions CYP102A1 and the double R47L,Y51F mutant, although not regioselective, performed better on all substrates in terms of product titres over 8 h, and thus STYs and TTNs, than heavily mutated variants that have been reported to give very high TOFs. CYP153A6, with its ferredoxin (Fdx) and ferredoxin reductase (FdR), emerged as the superior catalyst for conversion of n‐alkanes. In addition to its excellent regioselectivity it also gave the highest final product titres and STYs in WC conversions of hexane and octane. Interaction with FdR and Fdx initially limited performance in CFEs, but with additional FdR and Fdx gave 1‐octanol titres of 50 mmol⋅LBRM−1 and TTNs exceeding 12,000 over 18 h, rivalling results reported with self‐sufficient CYPs. Selecting biocatalysts for application requires caution, since experimental conditions such as amount of substrate added and solubility as well as cofactor dependence and regeneration can have a profound effect on catalyst performance, while stability and efficiency with regard to cofactor usage (coupling efficiency) are at least as important as TOFs when high product titres and STYs are the target.

  相似文献   


8.
Cytochrome P450 BM‐3 (EC 1.14.14.1) is a monooxygenase that utilizes NADPH and dioxygen to hydroxylate fatty acids at subterminal positions. The enzyme is also capable of functioning as a peroxygenase in the same reaction, by utilizing hydrogen peroxide in place of the reductase domain, cofactor and oxygen. As a starting point for developing a practically useful hydroxylation biocatalyst, we compare the activity and regioselectivity of wild‐type P450 BM‐3 and its F87A mutant on various fatty acids. Neither enzyme catalyzes terminal hydroxylation under any of the conditions studied. While significantly enhancing peroxygenase activity, the F87A mutation also shifts hydroxylation further away from the terminal position. The H2O2‐driven reactions with either the full‐length BM‐3 enzyme or the heme domain are slow, but yield product distributions very similar to those generated when using NADPH and O2.  相似文献   

9.
The substrate flexibilities of several cytochrome P450 monooxygenases involved in macrolide biosynthesis were investigated to test their potential for the generation of novel macrolides. PikC hydroxylase in the pikromycin producer Streptomyces venezuelae accepted oleandomycin as an alternative substrate and introduced a hydroxy group at the C‐4 position, which is different from the intrinsic C‐12 hydroxylation position in the natural substrate. This is the first report of C‐4 hydroxylation activity of cytochrome P450 monooxygenase involved in the biosynthesis of 14‐membered macrolides. EryF hydroxylase from the erythromycin biosynthetic pathway of Saccharopolyspora erythraea and OleP oxidase from the oleandomycin biosynthetic pathway of Streptomyces antibioticus also showed a certain degree of plasticity towards alternative substrates. In particular, EryF and OleP were found to oxidize a 12‐membered macrolactone as an alternative substrate. These results demonstrate the potential usefulness of these enzymes to diversify macrolactones by post‐PKS oxidations.  相似文献   

10.
Porter  Todd D. 《Lipids》2015,50(10):927-936
Cholesterol synthesis in the endoplasmic reticulum requires electron input at multiple steps and utilizes both NADH and NADPH as the electron source. Four enzymes catalyzing five steps in the pathway require electron input: squalene monooxygenase, lanosterol demethylase, sterol 4α‐methyl oxidase, and sterol C5‐desaturase. The electron‐donor proteins for these enzymes include cytochrome P450 reductase and the cytochrome b5 pathway. Here I review the evidence for electron donor protein requirements with these enzymes, the evidence for additional electron donor pathways, and the effect of deletion of these redox enzymes on cholesterol and lipid metabolism.  相似文献   

11.
12.
Cytochromes P450 from plants have the potential to be valuable catalysts for industrial hydroxylation reactions, but their application is hindered by poor solubility, the lack of suitable expression systems and the requirement of P450s for auxiliary redox‐transport proteins for the delivery of reducing equivalents from NAD(P)H. In the interests of enabling useful P450 activity from plants, we have developed a suite of vectors for the expression of plant P450s as non‐natural genetic fusions with reductase proteins. First, we have fused the P450 isoflavone synthase (IFS) from Glycine max with the bacterial P450 reductase domain (Rhf‐RED) from Rhodococcus sp., by using our LICRED vector developed previously (F. Sabbadin, R. Hyde, A. Robin, E.‐M. Hilgarth, M. Delenne, S. Flitsch, N. Turner, G. Grogan, N. C. Bruce, ChemBioChem 2010 , 11, 987–994) creating the first active bacterial–plant fusion P450 enzyme. We have then created a complementary vector, ACRyLIC for the fusion of selected plant P450 enzymes to the P450 reductase ATR2 from Arabidopsis thaliana. The applicability of this vector to the creation of active P450 fusion enzymes was demonstrated using both IFS1 and the cinnamate‐4‐hydroxylase (C4H) from A. thaliana. Overall the fusion vector systems will allow the rapid creation of libraries of plant P450s with the aim of identifying enzyme activities with possible applications in industrial biocatalysis.  相似文献   

13.
14.
CYP102A1 (BM3) is a catalytically self-sufficient flavocytochrome fusion protein isolated from Bacillus megaterium, which displays similar metabolic capabilities to many drug-metabolizing human P450 isoforms. BM3′s high catalytic efficiency, ease of production and malleable active site makes the enzyme a desirable tool in the production of small molecule metabolites, especially for compounds that exhibit drug-like chemical properties. The engineering of select key residues within the BM3 active site vastly expands the catalytic repertoire, generating variants which can perform a range of modifications. This provides an attractive alternative route to the production of valuable compounds that are often laborious to synthesize via traditional organic means. Extensive studies have been conducted with the aim of engineering BM3 to expand metabolite production towards a comprehensive range of drug-like compounds, with many key examples found both in the literature and in the wider industrial bioproduction setting of desirable oxy-metabolite production by both wild-type BM3 and related variants. This review covers the past and current research on the engineering of BM3 to produce drug metabolites and highlights its crucial role in the future of biosynthetic pharmaceutical production.  相似文献   

15.
Cytochrome P450 enzymes (CYPs) are heme-containing enzymes that catalyze hydroxylation with a variety of biological molecules. Despite their diverse activity and substrates, the structures of CYPs are limited to a tertiary structure that is similar across all the enzymes. It has been presumed that CYPs overcome substrate selectivity with highly flexible loops and divergent sequences around the substrate entrance region. Here, we report the newly identified CYP101D5 from Sphingomonas echinoides. CYP101D5 catalyzes the hydroxylation of β-ionone and flavonoids, including naringenin and apigenin, and causes the dehydrogenation of α-ionone. A structural investigation and comparison with other CYP101 families indicated that spatial constraints at the substrate-recognition site originate from the B/C loop. Furthermore, charge distribution at the substrate binding site may be important for substrate selectivity and the preference for CYP101D5.  相似文献   

16.
Cytochrome P450 oxidoreductase (POR) is the redox partner of steroid and drug-metabolising cytochromes P450 located in the endoplasmic reticulum. Mutations in POR cause a broad range of metabolic disorders. The POR variant rs17853284 (P228L), identified by genome sequencing, has been linked to lower testosterone levels and reduced P450 activities. We expressed the POR wild type and the P228L variant in bacteria, purified the proteins, and performed protein stability and catalytic functional studies. Variant P228L affected the stability of the protein as evidenced by lower unfolding temperatures and higher sensitivity to urea denaturation. A significant decline in the rate of electron transfer to cytochrome c and thiazolyl blue tetrazolium (MTT) was observed with POR P228L, while activities of CYP3A4 were reduced by 25% and activities of CYP3A5 and CYP2C9 were reduced by more than 40% compared with WT POR. The 17,20 lyase activity of CYP17A1, responsible for the production of the main androgen precursor dehydroepiandrosterone, was reduced to 27% of WT in the presence of the P228L variant of POR. Based on in silico and in vitro studies, we predict that the change of proline to leucine may change the rigidity of the protein, causing conformational changes in POR, leading to altered electron transfer to redox partners. A single amino acid change can affect protein stability and cause a severe reduction in POR activity. Molecular characterisation of individual POR mutations is crucial for a better understanding of the impact on different redox partners of POR.  相似文献   

17.
Cytochrome P450 monooxygenase CYP51 (sterol 14α-demethylase) is a well-known target of the azole drug fluconazole for treating cryptococcosis, a life-threatening fungal infection in immune-compromised patients in poor countries. Studies indicate that mutations in CYP51 confer fluconazole resistance on cryptococcal species. Despite the importance of CYP51 in these species, few studies on the structural analysis of CYP51 and its interactions with different azole drugs have been reported. We therefore performed in silico structural analysis of 11 CYP51s from cryptococcal species and other Tremellomycetes. Interactions of 11 CYP51s with nine ligands (three substrates and six azoles) performed by Rosetta docking using 10,000 combinations for each of the CYP51-ligand complex (11 CYP51s × 9 ligands = 99 complexes) and hierarchical agglomerative clustering were used for selecting the complexes. A web application for visualization of CYP51s’ interactions with ligands was developed (http://bioshell.pl/azoledocking/). The study results indicated that Tremellomycetes CYP51s have a high preference for itraconazole, corroborating the in vitro effectiveness of itraconazole compared to fluconazole. Amino acids interacting with different ligands were found to be conserved across CYP51s, indicating that the procedure employed in this study is accurate and can be automated for studying P450-ligand interactions to cater for the growing number of P450s.  相似文献   

18.
The hydroxylation activity of the Thr268Ala mutant of P450(BM3) has been shown to occur to varying degrees with small alterations in the structure of a fatty-acid substrate. Ten substrates were investigated, including straight chain, branched chain and cis-cyclopropyl substituted fatty acids with a straight-chain length that varied between 12 and 16 carbon atoms. The efficacy of the hydroxylation activity appeared to be governed by the chain length of the substrate. Substrates possessing 14 to 15 carbons afforded the highest levels of activity, which were comparable with the wild-type enzyme. Outside of this window, straight-chain fatty acids showed reduced activity over the other substrate types. These results provide a cautionary tale concerning the loss of ferryl activity in such cytochrome P450 threonine to alanine mutants, as the nature of the substrate can determine the extent to which hydroxylation chemistry is abolished.  相似文献   

19.
Descurainia sophia L. (flixweeds) is a noxious broad-leaf weed infesting winter wheat fields in China that has evolved high resistance to tribenuron-methyl. In this work, a brand new gene CYP77B34 was cloned from tribenuron-methyl-resistant (TR) D. sophia and transferred into Arabidopsis thaliana, and the sensitivities of Arabidopsis with or without the CYP77B34 transgene to herbicides with a different mode of actions (MoAs) were tested. Compared to Arabidopsis expressing pCAMBIA1302-GFP (empty plasmid), Arabidopsis transferring pCAMBIA1302-CYP77B34 (recombinant plasmid) became resistant to acetolactate synthase (ALS)-inhibiting herbicide tribenuron-methyl, protoporphyrinogen oxidase (PPO)-inhibiting herbicides carfentrazone-ethyl and oxyfluorfen. Cytochrome P450 inhibitor malathion could reverse the resistance to tribenuron-methyl, carfentrazone-ethyl and oxyfluorfen in transgenic Arabidopsis plants. In addition, the metabolic rates of tribenuron-methyl in Arabidopsis expressing CYP77B34 were significantly higher than those in Arabidopsis expressing pCAMBIA1302-GFP. Other than that, the transgenic plants showed some tolerance to very-long-chain fatty acid synthesis (VLCFAs)-inhibiting herbicide pretilachlor and photosystem (PS) II-inhibiting herbicide bromoxynil. Subcellular localization revealed that the CYP77B34 protein was located in the endoplasmic reticulum (ER). These results clearly indicated that CYP77B34 mediated D. sophia resistance to tribenuron-methyl and may have been involved in D. sophia cross-resistance to carfentrazone-ethyl, oxyfluorfen, pretilachlor and bromoxynil.  相似文献   

20.
The metabolism of benzo[c]chrysene (B[c]Ch) with various cytochrome P450 (CYP) enzymes including rat 1A1, 1A2, 2B1 and 2E1, human 1A1, 1A2, 2A6, 1B1, 3A4 and 2E1, mouse 1B1, and scup fish 1A1 expressed in Chinese hamster V79 cells has been investigated to clarify the role of individual enzymes in the regioselective oxidation of B[c]Ch and the species dependency. In six cell lines expressing individual CYP enzymes from four different species B[c]Ch was metabolized to several isomeric phenols and trans?dihydrodiols. However, cell lines expressing human 3A4, 2A6 and 2E1 or rat 1A2, 2B1 and 2E1 were metabolically in-competent towards B[c]Ch. Among the trans?dihydrodiols the 9,10-isomer could be detected in cells expressing human, rat and fish CYP 1A1 and to a minor extent in cells with human 1A2, but not in cells expressing human and mouse CYP 1B1. The latter two cell lines produced high amounts of the bay region 3,4-dihydrodiol, whereas the K-region 7,8-dihydrodiol was a minor metabolite. Oxidation of B[c]Ch to the 1,2-dihydrodiol could not be catalyzed by any of the CYP enzymes investigated except fish 1A1. Our results suggest that metabolic activation of B[c]Ch is initiated predominantly by CYP 1A1 to result selectively in the formation of fjord region 9,10-dihydrodiol 11,12-epoxides regardless of the species involved. The activation of B[c]Ch appears to be limited by a low regioselectivity for the 9,10-oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号