首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The role of La2O3 loading in Pd/Al2O3-La2O3 prepared by sol–gel on the catalytic properties in the NO reduction with H2 was studied. The catalysts were characterized by N2 physisorption, temperature-programmed reduction, differential thermal analysis, temperature-programmed oxidation and temperature-programmed desorption of NO.

The physicochemical properties of Pd catalysts as well as the catalytic activity and selectivity are modified by La2O3 inclusion. The selectivity depends on the NO/H2 molar ratio (GHSV = 72,000 h−1) and the extent of interaction between Pd and La2O3. At NO/H2 = 0.5, the catalysts show high N2 selectivity (60–75%) at temperatures lower than 250 °C. For NO/H2 = 1, the N2 selectivity is almost 100% mainly for high temperatures, and even in the presence of 10% H2O vapor. The high N2 selectivity indicates a high capability of the catalysts to dissociate NO upon adsorption. This property is attributed to the creation of new adsorption sites through the formation of a surface PdOx phase interacting with La2O3. The formation of this phase is favored by the spreading of PdO promoted by La2O3. DTA shows that the phase transformation takes place at temperatures of 280–350 °C, while TPO indicates that this phase transformation is related to the oxidation process of PdO: in the case of Pd/Al2O3 the O2 uptake is consistent with the oxidation of PdO to PdO2, and when La2O3 is present the O2 uptake exceeds that amount (1.5 times). La2O3 in Pd catalysts promotes also the oxidation of Pd and dissociative adsorption of NO mainly at low temperatures (<250 °C) favoring the formation of N2.  相似文献   


2.
Conversion of NOx with reducing agents H2, CO and CH4, with and without O2, H2O, and CO2 were studied with catalysts based on MOR zeolite loaded with palladium and cerium. The catalysts reached high NOx to N2 conversion with H2 and CO (>90% conversion and N2 selectivity) range under lean conditions. The formation of N2O is absent in the presence of both H2 and CO together with oxygen in the feed, which will be the case in lean engine exhaust. PdMOR shows synergic co-operation between H2 and CO at 450–500 K. The positive effect of cerium is significant in the case of H2 and CH4 reducing agent but is less obvious with H2/CO mixture and under lean conditions. Cerium lowers the reducibility of Pd species in the zeolite micropores. The catalysts showed excellent stability at temperatures up to 673 K in a feed with 2500 ppm CH4, 500 ppm NO, 5% O2, 10% H2O (0–1% H2), N2 balance but deactivation is noticed at higher temperatures. Combining results of the present study with those of previous studies it shows that the PdMOR-based catalysts are good catalysts for NOx reduction with H2, CO, hydrocarbons, alcohols and aldehydes under lean conditions at temperatures up to 673 K.  相似文献   

3.
A series of CeO2 promoted cobalt spinel catalysts were prepared by the co-precipitation method and tested for the decomposition of nitrous oxide (N2O). Addition of CeO2 to Co3O4 led to an improvement in the catalytic activity for N2O decomposition. The catalyst was most active when the molar ratio of Ce/Co was around 0.05. Complete N2O conversion could be attained over the CoCe0.05 catalyst below 400 °C even in the presence of O2, H2O or NO. Methods of XRD, FE-SEM, BET, XPS, H2-TPR and O2-TPD were used to characterize these catalysts. The analytical results indicated that the addition of CeO2 could increase the surface area of Co3O4, and then improve the reduction of Co3+ to Co2+ by facilitating the desorption of adsorbed oxygen species, which is the rate-determining step of the N2O decomposition over cobalt spinel catalyst. We conclude that these effects, caused by the addition of CeO2, are responsible for the enhancement of catalytic activity of Co3O4.  相似文献   

4.
Ethanol steam reforming was studied over Ni/Al2O3 catalysts. The effect of support (- and γ-Al2O3), metal loading and a comparison between conventional H2 reduction with an activation method employing a CH4/O2 mixture was investigated. The properties of catalysts were studied by N2 physisorption, X-ray diffraction (XRD) and temperature programmed reduction (TPR). After activity tests, the catalysts were analyzed by scanning electron microscopy (SEM) and thermogravimetric analysis (TG/DTA). Ni supported on γ-Al2O3 was more active for H2 production than the catalyst supported on -Al2O3. Metal loading did not affect the catalytic performance. The alternative activation method with CH4/O2 mixture affected differently the activity and stability of the Ni/γ-Al2O3 and the Ni/-Al2O3 catalyst. This activation method increased significantly the stability of Ni/-Al2O3 compared to H2 reduction. SEM and TG/DTA analysis indicate the formation of filamentous carbon during the CH4/O2 activation step, which is associated with the increasing catalyst activity and stability. The effect of temperature on the type of carbon formed was investigated; indicating that filamentous coke increased activity while encapsulating coke promoted deactivation. A discussion about carbon formation and the influence on the activity is presented.  相似文献   

5.
The direct synthesis of hydrogen peroxide from H2 and O2 using zeolite-supported Au-Pd catalysts is described using two zeolites, ZSM-5 and zeolite Y, using an impregnation method of preparation. The addition of Pd to Au for these catalysts significantly enhances the productivity for hydrogen peroxide. The use of zeolites as a support for Au-Pd gives higher rates of hydrogen peroxide formation when compared with alumina-supported Au catalysts prepared using a similar method. The addition of metals other than Pd is also investigated, but generally Au-Pd catalysts give the highest activity for the synthesis of hydrogen peroxide. The addition of Ru and Rh have no significant effect, but the addition of Pt does enhance the activity for the selective formation of hydrogen peroxide.  相似文献   

6.
The extent of Rh–niobia interaction in niobia-supported Rh (Rh/Nb2O5), niobia-promoted Rh/SiO2 (Nb2O5–Rh/SiO2) and RhNbO4/SiO2 catalyst after H2 reduction has been investigated by H2 and CO chemisorption measurements. These catalysts have been applied to selective CO oxidation in H2 (CO+H2+O2) and CO hydrogenation (CO+H2), and the results are compared with those of unpromoted Rh/SiO2 catalysts. It has been found that niobia (NbOx) increases the activity and selectivity for both the reactions.  相似文献   

7.
The reduction of NOx by hydrogen under lean burn conditions over Pt/Al2O3 is strongly poisoned by carbon monoxide. This is due to the strong adsorption and subsequent high coverage of CO, which significantly increases the temperature required to initiate the reaction. Even relatively small concentrations of CO dramatically reduce the maximum NOx conversions achievable. In contrast, the presence of CO has a pronounced promoting influence in the case of Pd/Al2O3. In this case, although pure H2 and pure CO are ineffective for NOx reduction under lean burn conditions, H2/CO mixtures are very effective. With a realistic (1:3) H2:CO ratio, typical of actual exhaust gas, Pd/Al2O3 is significantly more active than Pt/Al2O3, delivering 45% NOx conversion at 160 °C, compared to >15% for Pt/Al2O3 under identical conditions. The nature of the support is also critically important, with Pd/Al2O3 being much more active than Pd/SiO2. Possible mechanisms for the improved performance of Pd/Al2O3 in the presence of H2+CO are discussed.  相似文献   

8.
MgO-promoted Ni/Al2O3 catalysts have been investigated with respect to catalytic activity and coke formation in combined steam and carbon dioxide reforming of methane (CSCRM) to develop a highly active and stable catalyst for gas to liquid (GTL) processes. Ni/Al2O3 catalysts were promoted through varying the MgO content by the incipient wetness method. X-ray diffraction (XRD), BET surface area, H2-temperature programmed reduction (TPR), H2-chemisorption and CO2-temperature programmed desorption (TPD) were used to observe the characteristics of the prepared catalysts. The coke formation and amount in used catalysts were examined by SEM and TGA, respectively. H2/CO ratio of 2 was achieved in CSCRM by controlling the feed H2O/CO2 ratio. The catalysts prepared with 20 wt.% MgO exhibit the highest catalytic performance and have high coke resistance in CSCRM. MgO promotion forms MgAl2O4 spinel phase, which is stable at high temperatures and effectively prevents coke formation by increasing the CO2 adsorption due to the increase in base strength on the surface of catalyst.  相似文献   

9.
A series of new tubular catalytic membranes (TCM's) have been prepared and tested in the direct synthesis of H2O2. Such TCM's are asymmetric -alumina mesoporous membranes supported on macroporous -alumina, either with a subsequent carbon coating (CAM) or without (AAM). Pd was introduced by two different impregnation techniques. Deposition–precipitation (DP) was applied to CAM's to obtain an even Pd particles distribution inside the membrane pore network, whereas electroless plating deposition (EPD) was successfully applied to AAM's to give a 1–10 μm thick nearly-dense Pd layer. Both type of membranes were active in the direct synthesis of H2O2. Catalytic tests were carried out in a semi-batch re-circulating reactor under very mild conditions. Concentrations as high as 250–300 ppm H2O2 were commonly achieved with both CAM's and AAM's after 6–7 h time on stream, whereas the decomposition rate was particularly high in the presence of H2. Important features are the temperature control and pre-activation. In order to slow down the decomposition and favor the synthesis of H2O2 a smooth metal surface is needed.  相似文献   

10.
This study focuses on the loading of catalytic materials, e.g., palladium on the surface of supporting materials, with the aim to obtain catalysts with high activity for methane combustion. The catalyst PdO/CeO2-Al2O3 was prepared by impregnation under ultrasonic condition. The effect of different activation methods on the activity of catalysts for methane catalytic combustion was tested. The properties of reaction and adsorption of oxygen species on catalyst surface were characterized by H2-temperature programmed reduction (H2-TPR), and O2-temperature programmed desorption (O2-TPD). Furthermore, the sulfur tolerance and sulfur poisoning mode were investigated. The results indicate that the catalyst PdO/CeO2-Al2O3 activated with rapid activation shows higher activity for methane combustion and better sulfur tolerance. The result of sulfur content analysis shows that there is a large number of sulfur species on the catalyst’s surface after reactivation at high temperature. It proves that the activity of catalysts cannot be fully restored by high-temperature reactivation.  相似文献   

11.
Chunli Zhao  Israel E. Wachs   《Catalysis Today》2006,118(3-4):332-343
The vapor-phase selective oxidation of propylene (H2CCHCH3) to acrolein (H2CCHCHO) was investigated over supported V2O5/Nb2O5 catalysts. The catalysts were synthesized by incipient wetness impregnation of V-isopropoxide/isopropanol solutions and calcination at 450 °C. The catalytic active vanadia component was shown by in situ Raman spectroscopy to be 100% dispersed as surface VOx species on the Nb2O5 support in the sub-monolayer region (<8.4 V/nm2). Surface allyl species (H2CCHCH2*) were observed with in situ FT-IR to be the most abundant reaction intermediates. The acrolein formation kinetics and selectivity were strongly dependent on the surface VOx coverage. Two surface VOx sites were found to participate in the selective oxidation of propylene to acrolein. The reaction kinetics followed a Langmuir–Hinshelwood mechanism with first-order in propylene and half-order in O2 partial pressures. C3H6-TPSR spectroscopy studies also revealed that the lattice oxygen from the catalyst was not capable of selectively oxidizing propylene to acrolein and that the presence of gas phase molecular O2 was critical for maintaining the surface VOx species in the fully oxidized state. The catalytic active site for this selective oxidation reaction involves the bridging VONb support bond.  相似文献   

12.
The Pd–Pt/Al2O3 bimetallic catalysts showed high activities toward the wet oxidation of the reactive dyes in the presence of 1% H2 together with excess oxygen. Palladium was believed to act as a co-catalyst to spillover the adsorbed H2 onto the surface of the oxidized Pt surface, and thereby the reducibility of the Pt increased greatly. The organic dye molecule adsorbed on the reduced Pt surface more easily than the oxidized Pt surface under the competition with excess oxygen, which is an essential step for the catalytic wet oxidation (CWO). The Pd–Pt/Al2O3 catalysts also produced H2O2 from H2/O2 mixture, and the hydroxyl radical was formed through the subsequent decomposition of H2O2. Additional oxidation of the reactive dyes was obtained with hydroxyl radical. The high activities of the Pd–Pt/Al2O3 catalysts were believed to be due to the combined effects of the faster redox cycle resulting from the increased reducibility of Pt surface and the additional oxidation of the reactive dyes with hydroxyl radical.  相似文献   

13.
考察过渡金属Ni对Pd/Al_2O_3催化剂甲烷催化燃烧活性的影响以及过渡金属负载量及循环条件对甲烷降解性能的影响,采用扫描电镜、N_2吸附-脱附以及H_2程序升温还原技术对催化剂进行表征。结果表明,过渡金属Ni的添加对催化剂在(375~475)℃下的甲烷催化燃烧活性产生影响。催化剂经多次重复使用后,催化燃烧活性提高。分析原因为经过渡金属Ni改性后,可与载体形成NiAl_2O_4尖晶石,促进活性组分形成较小晶粒,并改善活性组分分散度,提高催化剂催化活性。  相似文献   

14.
The effect of the Pd addition method into the fresh Pd/(OSC + Al2O3) and (Pd + OSC)/Al2O3 catalysts (OSC material = CexZr1−xO2 mixed oxides) was investigated in this study. The CO + NO and CO + NO + O2 model reactions were studied over fresh and aged catalysts. The differences in the fresh catalysts were insignificant compared to the aged catalysts. During the CO + NO reaction, only small differences were observed in the behaviour of the fresh catalysts. The light-off temperature of CO was about 20 °C lower for the fresh Pd/(OSC + Al2O3) catalyst than for the fresh (Pd + OSC)/Al2O3 catalyst during the CO + NO + O2 reaction. For the aged catalysts lower NO reduction and CO oxidation activities were observed, as expected. Pd on OSC-containing alumina was more active than Pd on OSC material after the agings. The activity decline is due to a decrease in the number of active sites on the surface, which was observed as a larger Pd particle size for aged catalysts than for fresh catalysts. In addition, the oxygen storage capacity of the aged Pd/(OSC + Al2O3) catalyst was higher than that of the (Pd + OSC)/Al2O3 catalyst.  相似文献   

15.
Micro-channel plates with dimension of 1 mm × 0.3 mm × 48 mm were prepared by chemical etching of stainless steel plates followed by wash coating of CeO2 and Al2O3 on the channels. After coating the support on the plate, Pt, Co, and Cu were added to the plate by incipient wetness method. Reaction experiments of a single reactor showed that the micro-channel reactor coated with CuO/CeO2 catalyst was highly selective for CO oxidation while the one coated with Pt-Co/Al2O3 catalyst was highly active for CO oxidation. The 7-layered reactors coated with two different catalysts were prepared by laser welding and the performances of each reactor were tested in large scale of PROX conditions. The multi-layered reactor coated with Pt-Co/Al2O3 catalyst was highly active for PROX and the outlet concentration of CO gradually increased with the O2/CO ratio due to the oxidation of H2 which maintained the reactor temperature. The multi-layered reactor coated with CuO/CeO2 showed lower catalytic activity than that coated with Pt catalyst, but its selectivity was not changed with the increase of O2/CO ratios due to the high selectivity. In order to combine advantages (high activity and high selectivity) of the two individual catalysts (Pt-Co/Al2O3, CuO/CeO2), a serial reactor was prepared by connecting the two multi-layered micro-channel reactors with different catalysts. The prepared serial reactor exhibited excellent performance for PROX.  相似文献   

16.
The influence of the addition of 5 vol.% of carbon monoxide, hydrogen, carbon dioxide or water to the feed of partial oxidation of methane was investigated over Ni/γ-Al2O3 and Rh/γ-Al2O3 catalysts. In addition to catalytic tests, thermodynamic calculations were performed to predict the effect of these gas co-feeds. Compared to the thermodynamic trends, differences in the influence of the co-feeding on catalytic performances were observed between both catalysts. Co-feeding of CO, H2, CO2 or H2O can modify the oxidation state and dispersion of the metal component of the catalysts during reaction, and as a consequence, their performances. Changes in catalysts can be due to dynamic processes occurring during reaction. It is suggested to take these processes into account in a more complex kinetic equation for the reactions involved.  相似文献   

17.
采用共沉淀法合成一系列具有不同Ce/Zr物质的量比的铈锆固溶体CexZr1-xO2,考察Ce/Zr比例对H2S选择氧化反应催化活性的影响。通过XRD、BET、Raman、XPS、CO2-TPD、O2-TPD、H2-TPR等手段对铈锆固溶体的晶体结构、表面性质、碱性位以及氧化还原性等进行表征。结果表明,所有的铈锆固溶体催化剂均可以在化学计量比的氧气下具有优良的低温催化活性,催化活性随着Ce/Zr比例的提高而增加,其中Ce0.9Zr0.1O2活性最高,(160~260) ℃转化率均保持在95%以上,在180 ℃时硫收率可达到97%,这主要是因为Ce0.9Zr0.1O2具有最多的中度碱性位、活性位数量和强的氧化还原性。同时推测Ce4+为催化反应的活性位,并遵循氧化还原机理。此外,催化剂的失活主要是由于催化剂表面生成硫酸盐物种,消耗了活性组分Ce4+。  相似文献   

18.
A series of La(Co, Mn, Fe)1−x(Cu, Pd)xO3 perovskites having high specific surface areas and nanosized crystal domains was prepared by reactive grinding. The solids were characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed desorption (TPD) of O2, NO + O2, C3H6, in the absence or presence of 5% H2O, Fourier transform infrared (FTIR) spectroscopy, as well as activity tests towards NO reduction by propene under the conditions of 3000 ppm NO, 3000 ppm C3H6, 1% O2, 0 or 10% H2O, and 50,000 h−1 space velocity. The objective was to investigate the influence of H2O addition on catalytic behavior. A good performance (100% NO conversion, 77% N2 yield, and 90% C3H6 conversion) was achieved at 600 °C over LaFe0.8Cu0.2O3 under a dry feed stream. With the exposure of LaFe0.8Cu0.2O3 to a humid atmosphere containing 10% water vapor, the catalytic activity was slightly decreased yielding 91% NO conversion, 51% N2 yield, and 86% C3H6 conversion. A competitive adsorption between H2O vapor with O2 and NO molecules at anion vacancies over LaFe0.8Cu0.2O3 was found by means of TPD studies here. A deactivation mechanism was therefore proposed involving the occupation of available active sites by water vapor, resulting in an inhibition of catalytic activity in C3H6 + NO + O2 reaction. This H2O deactivation was also verified to be strictly reversible by removing steam from the feed.  相似文献   

19.
G. Centi  F. Vazzana 《Catalysis Today》1999,53(4):6695-693
The catalytic behavior in N2O reduction by propane in the presence of O2, H2O and SO2 of Fe/ZSM-5 catalysts prepared by ion exchange and chemical vapour deposition (CVD) is reported. The catalyst prepared by CVD shows a lower dependence of the rate of selective N2O reduction on the decrease in C3H8 to N2O ratio in the feed and a higher resistance to deactivation by SO2 in accelerated durability tests with high SO2 concentration (500 ppm). This catalyst shows stable catalytic behavior in the presence of SO2 for more than 600 h of time-on-stream. Characterization of the catalysts by UV–VIS–NIR diffuse reflectance indicates that the poor performances of the sample prepared by ion exchange could be related to the presence of highly clustered Fe3+ species, in this catalyst. On the other hand, Fe2O3 particles are not present in the sample prepared by CVD while mainly isolated Fe3+ ions and iron-oxide nanoclusters are present.  相似文献   

20.
The direct synthesis of hydrogen peroxide from H2 and O2 using a range of supported Au–Pd alloy catalysts is compared for different supports using conditions previously identified as being optimal for hydrogen peroxide synthesis, i.e. low temperature (2 °C) using a water–methanol solvent mixture and short reaction time. Five supports are compared and contrasted, namely Al2O3, -Fe2O3, TiO2, SiO2 and carbon. For all catalysts the addition of Pd to the Au only catalyst increases the rate of hydrogen peroxide synthesis as well as the concentration of hydrogen peroxide formed. Of the materials evaluated, the carbon-supported Au–Pd alloy catalysts give the highest reactivity. The results show that the support can have an important influence on the synthesis of hydrogen peroxide from the direct reaction. The effect of the methanol–water solvent is studied in detail for the 2.5 wt% Au–2.5 wt% Pd/TiO2 catalyst and the ratio of methanol to water is found to have a major effect on the rate of hydrogen peroxide synthesis. The optimum mixture for this solvent system is 80 vol.% methanol with 20 vol.% water. However, the use of water alone is still effective albeit at a decreased rate. The effect of catalyst mass was therefore also investigated for the water and water–methanol solvents and the observed effect on the hydrogen peroxide productivity using water as a solvent is not considered to be due to mass transfer limitations. These results are of importance with respect to the industrial application of these Au–Pd catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号