首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the optimum design, fabrication, and performance of a 1.3-μm multiple-quantum-well (MQW) laser diode monolithically integrated with a tapered thickness spot-size transformer. The dependence of the lasing characteristics on the thickness distribution of the core layer and on the current injection profile of the device were analyzed. This integrated laser with its optimized structure performed at a low threshold current of 22.2 mA, even at 85°C. The integrated spot-size transformer effectively reduced the lateral and vertical far-field FWHM's to 8° and 9°, respectively. A very long lifetime of over 1×105 h was estimated at 85°C and 8 mW under CW operation  相似文献   

2.
Single mode operation in a wide temperature range (-40°C~+85°C) has been obtained, from an etched-QW strongly gain-coupled (SGC) distributed-feedback laser at 1.3 μm. The SGC lasers exhibit an excellent sidemode-suppression-ratio (SMSR) of around 45-55 dB in continuous-wave operation, and a very good transient SMSR (TSMSR) of more than 35 dB during a gain-switched operation, both are over the entire temperature range. When mounted P-side up, the threshold current is about 12 mA at room temperature and 28 mA at +85°C. The output power is more than 20 mW with only 120-mA injection current at +85°C  相似文献   

3.
A 1.3-μm GaInAsP laser diode (LD) is integrated with a monitoring photodiode (M-PD) through a semiconductor/air Bragg reflector (SABAR). Instead of conventional cleavage, the SABAR can provide not only Fabry-Perot resonance with high reflectivity, but also possibility of integration of laser with other functional devices. The design, fabrication, and some characteristics including threshold current, monitoring photocurrent, SABAR reflectivity as a function of the number of semiconductor/air pairs N are reported. The threshold current of ridge waveguide laser with SABAR (cavity length L=160 μm, ridge width W=7 μm, SABAR pairs N=3) is 20 mA. The threshold current is reduced by improving butt-coupled interface between active and passive waveguides employed in this laser and is expected 2 mA/μm. The monitoring photocurrent responds linearly with output power from the laser and 0.024 mA at laser output power of 5 mW. From the threshold characteristics, SABAR reflectivity is determined to >80%. The increase of photocurrent can be achieved by optimizing the number of SABAR pairs to N=1. We have obtained threshold current of 22 mA in the followed laser structure (L=270 μm, W=7 μm, N=1), and detector photocurrent of 1.13 mA (@5 mW). The experimental SABAR reflectivity is ~50%, which is estimated by threshold characteristics and efficiency of light output power. The laser has a mode field converter section, resulting in narrow beam divergence 11° along vertical axis. This integrated laser is very promising candidate for coming optical module in low-power consumption and low-cost access network systems  相似文献   

4.
The effect of n-type modulation doping as well as growth temperature on the threshold current density of 1.3-μm InAsP strained multiple-quantum-well (MQW) lasers grown by gas-source molecular beam epitaxy (GSMBE) was investigated for the first time. We have obtained threshold current density as low as 250 A/cm2 for 1200-μm long devices. The threshold current density per well for infinite cavity length Jth/Nw∞ of 57 A/cm2 was obtained for the optimum n-doping density (ND=1×1018 cm-3) and the optimum growth temperature (515°C for InP and 455°C for the SCH-MQW region), which is about 30% reduction as compared with that of undoped MQW lasers. A very low continuous-wave threshold current of 0.9 mA have been obtained at room temperature, which is the lowest ever reported for long-wavelength lasers using n-type modulation doping, and the lowest results grown by all kinds of MBE in the long-wavelength region. The differential gain was estimated by the measurement of relative intensity noise. No significant reduction of differential gain was observed for n-type MD-MQW lasers as compared with undoped MQW lasers. The carrier lifetime was also reduced by about 33% by using n-type MD-MQW lasers. Both reduction of the threshold current and the carrier lifetime lead to the reduction of the turn-on delay time by about 30%. The 1.3-μm InAsP strained MQW lasers using n-type modulation doping with very low power consumption and small turn-on delay is very attractive for laser array application in high-density parallel optical interconnection systems  相似文献   

5.
High-temperature operation of 1.3-μm wavelength multiquantum-well (MQW) lasers with an active stripe horizontally tapered over whole cavity, for direct coupling to single-mode fibers (SMFs), are reported. The lasers have reduced the output-beam divergence in a simple structure which does not contain an additional spot-size transformer. To improve high-temperature characteristics, we have investigated the influence of the thickness of separate-confinement-heterostructure layers and the number of quantum wells (QWs) on the threshold current and the output-beam divergence at high temperature. As a result, the fabricated lasers show low-threshold current (~18 mA) and high-slope efficiency (~0.4 mW/mA) with narrow output-beam divergence (~12°) at 85°C. Moreover, we have obtained maximum coupling efficiency of -4.7 dB in a direct coupling to a SMF, and the reliability of longer than 105 h (MTTF) by a lifetime test of over 2000 h at 85°C  相似文献   

6.
High-performance 1.3-μm spot-size-converter integrated laser diodes (SSC-LDs) have been developed by using narrow-stripe (<2.0 μm) selective MOVPE. In order to decrease leak current at high temperature, a p-n-p-n current blocking structure was added using a self-alignment process. These LD's no longer require a semiconductor etching process. Superior lasing characteristics, such as a low driving current of 56 mA for output power of 10 mW, and high-slope efficiency at 85°C, were achieved by using a high-quality multiple-quantum well (MQW) active layer of narrow-stripe selective MOVPE and a p-n-p-n current blocking structure. A narrow radiation angle of 12° was obtained by optimizing the tapered-waveguide profile. A high-coupling efficiency of -2.8 dB was achieved between a LD chip and a single-mode fiber (SMF). This SSC-LD is very appropriate as a light source for access network systems, which require a low-cost LD module. It has excellent coupling efficiency, using a SMF, and a simple fabrication process, using selective MOVPE  相似文献   

7.
We have realized high-quality GaInAs-GaAs quantum wells (QWs) with high strain of over 2% on GaAs (311)B substrate for a polarization controlled vertical-cavity surface-emitting laser (VCSEL). By increasing the In composition in GaInAs, the optical anisotropy in photoluminescence (PL) intensity was increased. The anisotropy of 50% was obtained at 1.15 μm emission wavelength. We have demonstrated edge-emitting lasers and VCSELs emitting at over 1.1 μm on GaAs (311)B substrate for the first time. The 1.15-μm edge-emitting laser showed a characteristic temperature of 210 K and the threshold current density of 410 A/cm2. The threshold current and lasing wavelength of VCSELs are 0.9 mA and 1.12 μm, respectively. The orthogonal polarization suppression ratio was 25 dB and CW operation up to 170°C without a heat sink was achieved  相似文献   

8.
A very high characteristic temperature T0 of 150 K (25-70°C) or 450 K (25-50°C) and an almost constant differential quantum efficiency operation in the temperature range of 25-70°C were achieved in 1.3-μm GaInAsP-InP strained-layer quantum-well (SL-QW) lasers by use of a novel temperature dependent reflectivity (TDR) mirror composed of multiple quarter-lambda thickness α-Si-SiOx dielectric films with quarter-lambda shift in the vicinity of center portion, The mechanism of high T0 and constant differential quantum efficiency were explained using the structural parameters, transparent current density and gain coefficient of a SL-QW laser that are derived experimentally. The effect of TDR mirror was confirmed by measuring the temperature dependence of net gain of a SL-QW laser with TDR mirror. It was found that less temperature dependent net gain due to the decrease of mirror loss with temperature played an important role for improving the temperature characteristics of threshold current. Almost constant differential quantum efficiency over a wide temperature range is attributed to the increase of the facet reflectivity with temperature  相似文献   

9.
High performance buried heterostructure InGaAs-GaAs-AlGaAs quantum-well lasers and laser arrays with tight spatial confinement of the electrical current and the optical fields have been fabricated by metalorganic chemical vapor deposition. The lasers ace fabricated in a single growth step, using nonplanar substrates as a template for the active region definition. CW room temperature threshold currents, as low as 0.5 mA and 0.6 mA, are obtained for as-cleaved double and single quantum-well lasers, respectively. External quantum efficiencies exceeding 80% are obtained in the same devices. High-reflectivity facet-coated lasers have room temperature CW threshold currents as low as 0.145 mA with 10% external quantum efficiency. Lasers made by this technique have high yield and uniformity, and are suitable for low threshold array applications  相似文献   

10.
The understanding of material quality and luminescence characteristics of InGaAs-GaAs quantum dots (QD's) is advancing rapidly. Intense work in this area has been stimulated by the recent demonstration of lasing from a QD active region at the technologically important 1.3-μm wavelength from a GaAs-based heterostructure laser. Already, several groups have achieved low-threshold currents and current densities at room temperature from In(Ga)As QD active regions that emit at or close to 1.3 μm. In this paper, we discuss crystal growth, QD emission efficiency, and low-threshold lasing characteristics for 1.3-μm InGaAs-GaAs QD active regions grown using submonolayer depositions of In, Ga, and As. Oxide-confinement is effective in obtaining a low-threshold current of 1.2 mA and threshold-current density of 19 A/cm2 under continuous-wave (CW) room temperature (RT) operation. At 4 K, a remarkably low threshold-current density of 6 A/cm2 is obtained  相似文献   

11.
1.3-μm InP-InGaAsP lasers have been successfully fabricated on Si substrates by wafer bonding. InP-InGaAsP thin epitaxial films are prepared by selective etching of InP substrates and then bonded to Si wafers, after which the laser structures are fabricated on the bonded thin films. The bonding temperature has been optimized to be 400°C by considering bonding strength, quality of the bonded crystal, and compatibility with device processes. Room-temperature continuous-wave (RT CW) operation has been achieved for 6-μm-wide mesa lasers with a threshold current of 39 mA, which is identical to that of conventional lasers on InP substrates. Additionally, the lasers fabricated on Si have exhibited higher output powers than the lasers on InP, which is due to higher thermal conductivity of Si substrates. From these results, the wafer bonding is thought to be a promising technique to integrate optical devices on Si and implement optical interconnections between Si LSI chips  相似文献   

12.
1.3-/spl mu/m-range GaInNAsSb vertical-cavity surface-emitting lasers (VCSELs) with the doped mirror were investigated. GaInNASb active layers that include a small amount of Sb can be easily grown in a two-dimensional manner as compared with GaInNAs due to the suppression of the formation of three-dimensional growth in MBE growth. The authors obtained the lowest J/sub th/ per well (150 A/cm/sup 2//well) for the edge-emission type lasers due to the high quality of GaInNAsSb quantum wells. Using this material for the active media, the authors accomplished the first continuous wave operation of 1.3-/spl mu/m-range GaInNAsSb VCSELs. For the reduction of the threshold voltage and the differential resistance, they used the doped mirror grown by metal-organic chemical vapor deposition (MOCVD). By three-step growth, they obtained 1.3-/spl mu/m GaInNAs-based VCSELs with the low threshold current density (3.6 kA/cm/sup 2/), the low threshold voltage (1.2 V), and the low differential resistance (60 /spl Omega/) simultaneously for the first time. The back-to-back transmission was carried out up to 5 Gb/s. Further, the uniform operation of 10-ch VCSEL array was demonstrated. The maximum output power of 1 mW was obtained at 20/spl deg/C by changing the reflectivity of the front distributed Bragg reflector mirror. GaInNAsSb VCSELs were demonstrated to be very promising material for realizing the 1.3-/spl mu/m signal light sources, and the usage of the doped mirror grown by MOCVD is the best way for 1.3-/spl mu/m VCSELs.  相似文献   

13.
The 0.78- and 0.98-μm buried-ridge AlGaAs laser diodes (LD's) with a high Al-content AlGaAs confinement layer selectively grown by using a Cl-assisted MOCVD are demonstrated. By employing the AlGaAs confinement layer, the threshold current and the slope efficiency of the 0.78-μm LD are improved by ~40%, compared to those of the conventional loss-guided LD with the GaAs confinement layer. In addition, the stable fundamental mode up to 150 mW and the small astigmatic distance less than 1 μm are obtained. The 0.78-μm LD also shows the excellent high-power and high-temperature characteristic such as 100 mW CW operation at 100°C and the reliable 2,000-hour operation under the condition of 60°C and 55 mW. In the 0.98-μm LD, the narrow beam with the low aspect ratio of 1.86 and the stable fundamental transverse mode over 200 mW are exhibited. As a result, the 0.98-μm LD realizes the high fiber-coupled-power of 148 mW. Moreover, the high-power and high-temperature operation of 150 mW at 90°C is obtained. In the preliminary aging test, the LD's have been stably operating for over 900 hours under the condition of 50°C and 100 mW  相似文献   

14.
The performance characteristics of continuous-wave (CW) InGaN multiple-quantum-well (MQW) laser diodes on copper substrates are reported. InGaN MQW laser diodes (LDs) grown on sapphire substrates by metal-organic chemical vapor deposition were successfully separated from the sapphire and transferred onto copper substrates by using a two-step laser liftoff (LLO) process. Continuous-wave threshold currents as low as 65 mA have been achieved with threshold voltages of 6.5 V with a backside n-contact through the Cu substrate, improved heat dissipation due to the Cu substrate allowed CW laser operation up to a heatsink temperature of 80°C. Significant improvements in light output powers were observed for devices on Cu substrates with maximum CW output power of more than 100 mW  相似文献   

15.
To reduce packaging costs, it is necessary to use passive alignment between the laser diodes and optical fiber. Such an alignment requires low-coupling loss and large positional alignment tolerances. This is achievable with integrated spot-size converters, which permit to match the near field of a laser to that of a flat-end single-mode fiber (SMF). In this paper, we first review briefly the different technological approaches to realize spot-size converters. Then, we focus on the double-core structure developed both for 1.3-μm Fabry-Perot lasers and 1.55-μm semiconductor optical amplifiers (SOAs). The spot-size expansion is simulated using a two-dimensional (2-D) beam propagation method analysis. Short spot-size converters (100 μm) integrated with 1.3-μm lasers and 1.55-μm SOAs exhibit beam divergences as low as 12°×12° and 12°×15°, respectively. The performances of devices with integrated spot-size converters are reported and discussed. A 2-in wafer process is used thanks to the versatility of the double-core structure and its compatibility with buried ridge stripe technology  相似文献   

16.
Quantum-dot gain material fabricated by self-organized epitaxial growth on GaAs substrates is used for the realization of 980-nm and 1.3-/spl mu/m single-mode distributed feedback (DFB) lasers and edge-emitting microlasers. Quantum-dot specific properties such as low-threshold current, broad gain spectrum, and low-temperature sensitivity could be demonstrated on ridge waveguide and DFB lasers in comparison to quantum-well-based devices. 980-nm DFB lasers exhibit stable single-mode behavior from 20/spl deg/C up to 214/spl deg/C with threshold currents < 15 mA (1-mm cavity length). Utilizing the low-bandgap absorption of quantum-dot material miniaturized monolithically integrable edge-emitting lasers could be realized by deeply etched Bragg mirrors with cavity lengths down to 12 /spl mu/m. A minimum threshold current of 1.2 mA and a continuous-wave (CW) output power of >1 mW was obtained for 30-/spl mu/m cavity length. Low-threshold currents of 4.4 mA could be obtained for 1.3-/spl mu/m emitting 400-/spl mu/m-long high-reflection coated ridge waveguide lasers. DFB lasers made from this material by laterally complex coupled feedback gratings show stable CW single-mode emission up to 80/spl deg/C with sidemode suppression ratios exceeding 40 dB.  相似文献   

17.
High-performance 1.55-μm wavelength GaInAsP-InP strongly index-coupled and gain-matched distributed-feedback (DFB) lasers with periodic wirelike active regions mere fabricated by electron beam lithography, CH4/H2-reactive ion etching, and organometallic vapor-phase epitaxial regrowth, whose index-coupling coefficient was more than 300 cm-1. In order to design lasers for low threshold current operation, threshold current dependences on the number of quantum wells and the wire width mere investigated both theoretically and experimentally. A record low threshold current density of 94 A/cm2 among 1.55-μm DFB lasers was successfully obtained for a stripe width of 19.5 μm and a cavity length of 600 μm. Moreover, a record low threshold current of 0.7 mA was also realized at room temperature under CW condition for a 2.3-μm-wide buried heterostructure with a 200-μm-long cavity. Finally, we confirmed stable single-mode operation due to a gain-matching effect between the standing-wave profile and the wirelike active region  相似文献   

18.
We report on nonresonant cavity light-emitting diodes (NRC-LED) with large quantum efficiencies and high speed. A maximum quantum efficiency of 31% is measured for a device with an active layer thickness of 120 nm, and 18.7% for a device having an active layer of 30 nm. Further, we report on optical rise and fall times of NRC-LEDs. Even when switched to current levels below 4 mA, at which the external quantum efficiency exceeds 17%, our NRC-LEDs have 10%-90% rise and fall times of less than 2 ns. As a result, eye diagrams taken at this current level at 622 Mb/s are wide open. This demonstrates the suitability of high-efficiency NRC-LEDs for optical interconnects. Finally, from a system's viewpoint it is important to note that the optical output power of NRC-LEDs decreases by only 0.36%/°C  相似文献   

19.
The dependence of optical properties on crystal orientation is analyzed for long wavelength strained quantum-well (QW) GaAsP-InGaAsP lasers. The calculation is based on the multiband effective mass theory which enables us to consider the anisotropy and the nonparabolicity of the valence-band dispersions. It is found that the optical gain increases as the crystal orientation is inclined from (001) toward (110). This is due to the reduced valence-band density of states. The differential gain is about 1.6 times larger for the (110)-oriented 1.55-μm strained QW's than for equivalent (001)-oriented QW's. It is also shown that the threshold current density in 1.3-μm strained QW lasers decreases to two-thirds of that in the (001)-oriented laser as the orientation is inclined away from (001) by 40°-90  相似文献   

20.
We have succeeded in demonstrating continuous-wave (CW) operation of GaInNAs-GaAs single-quantum-well (SQW) laser diodes at room temperature (RT). The threshold current density was about 1.4 kA/cm2, and the operating wavelength was approximately 1.18 μm for a broad-stripe geometry. Evenly spaced multiple longitudinal modes were clearly observed in the lasing spectrum. The full-angle-half-power far-field beam divergence measured parallel and perpendicular to the junction plane was 4.5° and 45°, respectively. A high characteristic temperature (T0) of 126 K under CW operation and a small wavelength shift per ambient temperature change of 0.48 nm/°C under pulsed operation were obtained. These experimental results indicate the applicability of GaInNAs to long-wavelength laser diodes with excellent high-temperature performance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号