首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dual-mode gain control (DMGC) technique is presented for accurate and energy-efficient pre-amplification in the front-end system of a hearing aid chip. Compared with the conventional automatic gain control (AGC) approach, the DMGC approach is characterized by an amplification switching mechanism between the pro-linearity discrete gain setting mode and the energy-efficient AGC mode. Thus, the total harmonic distortion (THD) should be significantly improved without incurring any degradation concerning other performances parameters (e.g. gain, noise and power consumption). In order to further enhance the system power efficiency, a self current-adapting (SCA) circuit design technique is proposed. Such SCA circuits are capable of automatically adjusting the bias current in accordance with the sound level. A prototype chip was designed with a 0.13???m standard CMOS process and tested with 1?V supply voltage. The measurement results show that, for a typical output level of 500?mVp-p, the THD is somewhere below ?64?dB, achieving approximately ten times reduction compared to the previously reported works. The power consumption of less than 45???W has also been obtained. In addition, the typical input referred noise is only 2???Vrms and the maximum gain attainable is up to 39?dB.  相似文献   

2.
介绍了利用CSMC 0.6μm CMOS工艺实现的、应用于电流模逻辑电路中的高线性度电压电流转换(VTC)电路。该电路采用了高增益两级运算放大器,以及工作在弱反型区的MOS管电压电流呈指数律关系实现的PTAT基准电流源。详细分析了电阻与运算放大器的非线性影响因素。测试结果表明,输出的总谐波失真为0.0002%,输入动态范围为0~2.6V,输出电流为50~426μA,PTAT基准电流源对电源变化的灵敏度为0.0217。芯片采用5V供电,功耗约为1.3mW,芯片面积为0.112mm2。  相似文献   

3.
提出了一种用SMIC 0.18μm CMOS混合信号工艺实现的全集成CMOS微阵列生物芯片,并成功地实现了其与一种新的生物纳米系统的集成.该电路实现了19μm×19μm电极的4×4(16单元)阵列,反相电极.电流模式放大器,译码电路,以及逻辑控制电路的单片集成,并能够提供-1.6~1.6V的组装电压,8bit的电位分辨率及39.8dB的电流增益,电源电压为1.8V,而失调和噪声电流分别为5.9nA和25.3pArms.在实验中,利用该电路实现了对30nm聚乙烯醇包裹的磁性粒子的片上选择性组装,并对实验结果进行了讨论,从而验证了该电路的正确性和该集成方法的可行性.  相似文献   

4.
石丹  高博  龚敏 《半导体光电》2018,39(2):201-205,215
针对生物信号微弱、变化范围大等特点设计了一种用于检测微弱电流的全差分跨阻放大器(TIA)电路结构。不同于传统电路的单端输入,该结构采用高增益的全差分两级放大器实现小信号输入及轨到轨输出。基于CSMC 0.18μm CMOS工艺,采用1.8V电源电压对设计的电路进行了仿真,仿真结果表明:TIA输入电流动态范围为100nA^10μA,最大跨阻增益达到104.38dBΩ,-3dB带宽为4MHz,等效输入噪声电流为1.26pA/Hz。对电路进行跨阻动态特性仿真表明,在输入电流为100nA时,输出电压的动态摆幅达到3.24mV,功耗仅为250μW,总谐波失真(THD)为-49.93dB。所设计的高增益、低功耗、宽输入动态范围TIA适用于生物医疗中极微小生物信号的采集,可作为模块电路集成在便携设备中。  相似文献   

5.
This paper presents a pipelined current mode analog to digital converter (ADC) designed in a 0.5-μm CMOS process. Adopting the global and local bias scheme, the number of interconnect signal lines is reduced numerously, and the ADC exhibits the advantages of scalability and portability. Without using linear capacitance,this ADC can be implemented in a standard digital CMOS process; thus, it is suitable for applications in the system on one chip (SoC) design as an analogue IP. Simulations show that the proposed current mode ADC can operate in a wide supply range from 3 to 7 V and a wide quantization range from ±64 to ±256μA. Adopting the histogram testing method, the ADC was tested in a 3.3 V supply voltage/±64μA quantization range and a 5 V supply voltage/±256μA quantization range, respectively. The results reveal that this ADC achieves a spurious free dynamic range of 61.46dB, DNL/INL are -0.005 to +0.027 LSB/-0.1 to +0.2 LSB, respectively, under a 5 V supply voltage with a digital error correction technique.  相似文献   

6.
本文提出了一种低压工作的轨到轨输入/输出缓冲级放大器。利用电阻产生的输入共模电平移动,该放大器可以在低于传统轨到轨输入级所限制的最小电压下工作,并在整个输入共模电压范围内获得恒定的输入跨导;它的输出级由电流镜驱动,实现了轨到轨电压输出,具有较强的负载驱动能力。该放大器在CSMCO.6-μmCMOS数模混合工艺下进行了HSPICE仿真和流片测试,结果表明:当供电电压为5V,偏置电流为60uA,负载电容为10pF时,开环增益为87.7dB,功耗为579uw,单位增益带宽为3.3MHz;当该放大器作为缓冲级时,输入3VPP10kHz正弦信号,总谐波失真THD为53.2dB。  相似文献   

7.
A high-performance current amplifier is proposed which is based on a folded-cascode transresistance amplifier and a low-distortion class AB current output stage. The loop gain of the transresistance amplifier exhibits a gain bandwidth product of 10 MHz and a DC gain as high as 100 dB which allows accurate closed-loop operations to be achieved. Despite the intrinsic low-linearity performance of current amplifiers with respect to their voltage amplifier counterpart, the proposed circuit provides an output current of 7 mA with a total harmonic distortion (THD) better than -55 dB while requiring only 200 μA of quiescent current for the output transistors. The circuit was fabricated in a 1.2 μm CMOS process, uses a 5 V power supply, and dissipates 4 mW  相似文献   

8.
介绍了一个新型电流模带隙基准源,该带隙基准源的输出基准可以设计为任意大于硅材料的带隙电压(1.25V)的电压,避免在应用中使用运算放大器进行基准电压放大.同时该结构消除了传统电流模带隙基准源的系统失调.该带隙基准源已通过UMC 0.18μm混合信号工艺验证.在1.6V电源电压下,该带隙基准源输出1.45V的基准电压,同时消耗27μA的电流.在不采用曲率补偿的情况下,输出基准的温度系数在30℃到150℃的温度范围内可以达到23ppm/℃.在电源电压从1.6变化到3V的情况下,带隙基准源的输入电压调整率为2.1mV/V.该带隙基准源在低频(10Hz)的电源电压抑制比为40dB.芯片面积(不包括Pads)为0.088mm2.  相似文献   

9.
正A low noise distributed amplifier consisting of 9 gain cells is presented.The chip is fabricated with 0.15-μm GaAs pseudomorphic high electron mobility transistor(PHEMT) technology from Win Semiconductor of Taiwan.A special optional gate bias technique is introduced to allow an adjustable gain control range of 10 dB.A novel cascode structure is adopted to extend the output voltage and bandwidth.The measurement results show that the amplifier gives an average gain of 15 dB with a gain flatness of±1 dB in the 2-20 GHz band.The noise figure is between 2 and 4.1 dB during the band from 2 to 20 GHz.The amplifier also provides 13.8 dBm of output power at a 1 dB gain compression point and 10.5 dBm of input third order intercept point(IIP3),which demonstrates the excellent performance of linearity.The power consumption is 300 mW with a supply of 5 V,and the chip area is 2.36×1.01 mm~2.  相似文献   

10.
This paper describes the design and realization of a sub 1-V low power class-AB bulk-driven tunable linear transconductor using a 0.18-μm CMOS technology. The proposed transconductor employs a class-AB bulk-driven differential input voltage follower and a passive resistor to achieve highly linear voltage-to-current conversion. Transconductance tuning is achieved by tuning the differential output current of the core transconductor with gain-adjustable current mirrors. With 10.4-μA current consumption from a 0.8-V single power supply voltage, simulation results show that the proposed transconductor achieves the total harmonic distortion (THD) of <?40 dB for a peak differential input voltage range of 800 mV at frequencies up to 10 kHz. The simulated input-referred noise voltage integrated over 10-kHz bandwidth is 100 μV, resulting to an input signal dynamic range of 75 dB for THD <?40 dB. A biquadratic Gm-C filter is designed to demonstrated the performance of the proposed transconductor. At the nominal 10-kHz cut-off frequency, the filter dissipates 34.4 μW from a 0.8-V supply voltage and it achieves an input signal dynamic range of 67.4 dB for the third-order intermodulation distortion of <?40 dB.  相似文献   

11.
设计一种数字控制的高增益宽带宽放大器,提出了采用多个放大器直接耦合级联方式,通过理论分析合理选择各级增益的分配,明显改善了放大器的低频特性,极大地提高了增益范围。系统由前置放大电路、程控增益放大电路、通频带选择电路、功率放大电路、单片机控制电路以及电源模块6个部分组成。其中通频带选择电路由两路巴特沃斯低通滤波器组成,可实现通频带的切换;功率放大电路由多个高速缓冲芯片BUF634并联组成,扩大了电流输出范围,实现了功率放大;单片机控制电路以MSP430G2553为主控芯片,使用液晶12864实现显示功能,人机界面友好。经测试,本系统能够完成0~10MHz频率范围内的0~80dB增益步进可调功能。在增益为60dB时,输出电压噪声峰峰值小于0.3V,很好的完成了系统的设计指标。  相似文献   

12.
正A current-mode front-end circuit with low voltage and low power for analog hearing aids is presented. The circuit consists of a current-mode AGC(automatic gain control) and a current-mode adaptive filter.Compared with its conventional voltage-mode counterparts,the proposed front-end circuit has the identified features of frequency compensation based on the state space theory and continuous gain with an exponential characteristic.The frequency compensation which appears only in the DSP unit of the digital hearing aid can upgrade the performance of the analog hearing aid in the field of low-frequency hearing loss.The continuous gain should meet the requirement of any input amplitude level,while its exponential characteristic leads to a large input dynamic range in accordance with the dB SPL(sound pressure level).Furthermore,the front-end circuit also provides a discrete knee point and discrete compression ratio to allow for high calibration flexibility.These features can accommodate users whose ears have different pain thresholds.Taking advantage of the current-mode technique,the MOS transistors work in the subthreshold region so that the quiescent current is small.Moreover,the input current can be compressed to a low voltage signal for processing according to the compression principle from the current-domain to the voltage-domain.Therefore,the objective of low voltage and low power(48μW at 1.4 V) can be easily achieved in a high threshold-voltage CMOS process of 0.35μm(V_(TON) + |V_(TOP)|≈1.35 V).The THD is below -45 dB.The fabricated chip only occupies the area of 1×0.5 mm~2 and 1×1 mm~2.  相似文献   

13.
A fully differential fifth-order SC filter that can operate from power supplies as low as 1.5 V featuring a -80 dB THD up to 4 Vpp output voltage is presented. A measured p-weighted noise of 120 μVrms leads to a dynamic range of 81.5 dB. This circuit is used as reconstruction filter for a low voltage 14-b DAC. The very low voltage operation has been possible by integrating a regulated voltage-multiplier on the same chip. The filter active area is 0.54 mm 2 in a 0.8 μm CMOS technology. Typical power consumption is 0.8 mW at 1.5 V supply  相似文献   

14.
一个电压接近1V 10ppm/℃带曲率补偿的CMOS带隙基准源   总被引:1,自引:0,他引:1  
介绍了一个带曲率补偿的低电压带隙基准源.由于采用电流模结构,带隙基准源的最低电源电压为900mV.通过VEB线性化补偿技术,带隙基准源在0到150℃的温度范围内的温度系数为10ppm/℃.在电源电压为1.1V时,电源电流为43μA,低频的PSRR为55dB.该带隙基准源已通过UMC 0.18μm混合信号工艺验证,芯片面积为0.186mm2.  相似文献   

15.
本文实现了一款应用于电力线通信的可编程增益放大器(PGA)。采用闭环直接耦合方式,动态范围为71dB,调节精度为1dB。为了优化功耗和面积,本文提出了一种新的电阻阵列。该设计在SMIC0.18μm工艺下仿真,结果表明:在35dB增益下输入参考噪声为20nV/姨Hz;输出电压峰峰值为1V时,THD达到-68dB;最大增益误差为0.11dB;在1.8V的供电电压下,功耗为1mA。  相似文献   

16.
王为之  靳东明 《半导体学报》2006,27(11):2025-2028
提出了一种采用共栅频率补偿的轨到轨输入/输出放大器,与传统的Miller补偿相比,该放大器不仅可以消除相平面右边的低频零点,减少频率补偿所需要的电容,还可获得较高的单位增益带宽.所提出的放大器通过CSMC 0.6μm CMOS数模混合工艺进行了仿真设计和流片测试:当供电电压为5V,偏置电流为20μA,负载电容为10pF时,其功耗为1.34mW,单位增益带宽为25MHz;当该放大器作为缓冲器,供电电压为3V,负载电容为150pF,输入2.66 Vpp10kHz正弦信号时,总谐波失真THD为-51.6dB.  相似文献   

17.
A CMOS variable gain amplifier (VGA) that adopts a novel exponential gain approximation is presented.No additional exponential gain control circuit is required in the proposed VGA used in a direct conversion receiver.A wide gain control voltage from 0.4 to 1.8 V and a high linearity performance are achieved. The three-stage VGA with automatic gain control (AGC) and DC offset cancellation (DCOC) is fabricated in a 0.18-μm CMOS technology and shows a linear gain range of more than 58-dB with a linearity error less than ± 1 dB. The 3-dB bandwidth is over 8 MHz at all gain settings. The measured input-referred third intercept point (IIP3) of the proposed VGA varies from -18.1 to 13.5 dBm, and the measured noise figure varies from 27 to 65 dB at a frequency of 1 MHz. The dynamic range of the closed-loop AGC exceeds 56 dB, where the output signal-to-noise-and-distortion ratio (SNDR) reaches 20 dB. The whole circuit, occupying 0.3 mm2 of chip area, dissipates less than 3.7 mA from a 1.8-V supply.  相似文献   

18.
A monolithic integrated transimpedance amplifier for the receiver in a 40-Gb/s optical-fiber TDM system has been fabricated in an InP-based HBT technology. Despite its high gain (transimpedance of 2 kΩ in the limiting mode, 10 kΩ in the linear mode) the complete amplifier was realized on a single chip. Clear output eye diagrams were measured up to 43 Gb/s under realistic driving conditions. The voltage swing of 0.6 Vpp at the differential 50 Ω output does not change within the demanded input dynamic range of 6 dB. At the upper input current level even 48 Gb/s were achieved. The power consumption is approximately 600 mW at a single supply voltage of -5.5 V  相似文献   

19.
A combination of circuit and device innovations has resulted in the development of a 15-W integrated-circuit power amplifier that incorporates a preamplifier on the same chip to give an overall closed-loop gain of 60 dB. Two novel devices used are a new high-frequency drift-lateral p-n-p to improve stability and a new 3-A n-p-n power transistor design with individual emitter ballasting to achieve a larger safe-operating area. Other interesting features are an externally adjustable short-circuit current limit, a built-in thermal shutdown circuit that automatically limits the junction temperature to 175/spl deg/C, an electronic shutdown control to mute the amplifier; a supply voltage range of 10-40 V, excellent power-supply rejection (55 dB), and a unique biasing technique that ensures that the output quiescent point remains at one-half the supply voltage with the total bias current changing only 3 mA over the complete supply voltage range (10-40 V).  相似文献   

20.
文中提出了一种用于助听器的低功耗增益控制系统.与传统增益控制系统相比,利用两个MRC电路模块同时实现了自动增益控制和指数增益控制功能,有效地降低了系统功耗.同时为了解决传统设计方法在声音压缩工作状态下功耗增加的问题,提出了一种高效增益控制电路,实现了系统从非压缩状态转到压缩状态时,系统功耗的显著降低.该系统在特许半导体公司0.13μm标准CMOS工艺下流片实现,芯片在1V电源电压下的测试结果表明,芯片的功耗控制在45μW以内,且在600mVp-p输出摆幅下的总谐波失真仅为0.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号