首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To give an insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically by using a density-correction based, Reynolds-Averaged Navier-Stokes equations commercial CFD code. The 2nd stator clocking is applied over ten equal tangential positions. The results show that the harmonic blade number ratio is an important factor affecting the clocking effect. The clocking effect has very small influence on the turbine efficiency in this investigation. The difference between the maximum and minimum efficiency is about 0.1%. The maximum efficiency can be achieved when the 1st stator wake enters the 2nd stator passage near blade suction surface and its adjacent wake passes through the 2nd stator passage close to blade pressure surface. The minimum efficiency appears if the 1st stator wake impinges upon the leading edge of the 2nd stator and its adjacent wake of the 1st stator passes through the mid-channel in the 2nd stator. The wake convective transportation and the blade circulation variation due to its impingement on the subsequent blade are the main mechanism affecting the pressure variation in blade surface.  相似文献   

2.
Kang He  Xingsi Han  Tian Yao 《传热工程》2019,40(17-18):1461-1472
ABSTRACT

The paper presents the effects of the leakage flow from the inter-platform gap on the migration of hot streak in a first stage turbine by three-dimensional unsteady Reynolds-Averaged Navier-Stokes simulations. Five circumferential positions of the hot streak are considered. The comparisons between the results with/without slot leakage show significant differences. The leakage changes the hot streak in the vane passage significantly and it protects the vane suction surface trailing from the hot gas. The leakage also changes the secondary flow and results in forming a new couple of vortices in the vane passage. In general, rotor passage, the hot gas usually gathers in the rotor hub and the pressure surface. In the present study, the leakage coolant from upstream slot is entrained to the unsteady rotor secondary flows and transported toward the rotor hub and pressure surface effectively. The cooling effect is related to the relative circumferential positions between the hot streaks and slot. When the hot streak is positioned at the slot suction side, the time-averaged temperature reduction on the blade leading edge can be more than twice of that for the hot streak at the slot pressure side.  相似文献   

3.
采用harmonic非定常计算方法模拟了某型燃气轮机中间三级轴流压气机流场,研究第二级动叶处于不同CLOCKING位置下尾迹输运机理,指出在非定常条件下,叶片排之间干扰主要来自于尾迹和势流对叶片排的交替作用。在CLK0位置,上游尾迹的输运主要表现为单个尾迹向下游的传播过程。在CLK2位置,上游动、静叶片尾迹掺混发生显著不同,上游尾迹的输运呈现多个尾迹的传播过程,进而导致下游叶片非定常气动负荷的波动幅值出现显著差异。  相似文献   

4.
采用基于谐函数(harmonic)的非定常计算方法,数值模拟了某型燃气轮机中间三级轴流压气机流场,研究第二级动叶CLOCKING效应对中间级静叶片气动负荷的影响。通过对各列叶片非定常气动力和气动力矩进行时域分析,指出不同CLOCKING位置对应的气流激振力对叶片的气动负荷造成了明显的影响。进行了中间级动叶和静叶的振动可靠性分析。计算结果表明,该压气机的3组静叶片避开共振区的程度各不相同。R2转子叶片处于不同的CLOCKING位置会引起下游S2静叶片气流激振力发生显著变化,导致S2叶片产生比较强烈的共振。  相似文献   

5.
石龚  丰镇平 《热力透平》2012,41(2):106-115
设计研制了具有亚音速透平高压级气动特性的一级半轴流式试验透平,采用试验方法对时序效应、叶栅壁面非定常静压幅频特性以及动叶出口非定常速度场进行了研究。结果表明:时序效应具有改善轴流式透平气动性能的潜力;动、静叶排压力有势场干涉引发的基频信号和上游静叶尾迹片段引发的两阶倍频信号,构成了第二列静叶壁面静压非定常分量的基本频率特征,其间还伴随高达六阶的倍频信号,主要由动叶尾缘高频脱落的涡街扰动产生;尚未完成掺混的第一列静叶尾迹片段出现在动叶出口,由其引发的负射流显著改变了动叶出口局部位置处的气流偏转角。  相似文献   

6.
一级半轴流式透平的非定常流动干涉与时序效应   总被引:16,自引:0,他引:16  
对Aachen一级半轴流式透平进行了全三维粘性非定常流动数值模拟,分析了相邻叶排间主要干涉现象和时序效应.结果表明:相邻叶排的压力有势场存在势干涉,动叶与第2列静叶间的势干涉更为强烈,势干涉定量反应为静压波动,并以一定的速度向上、下游传播;被动叶截断的上游静叶尾迹在动叶通道中发生变形而周期性地出现在绝对坐标系的固定位置,为时序效应的产生创造条件,通过分析动叶出口熵值的时空分布图可确定下游静叶的最优时序位置;透平级出口非定常熵值定性决定了非定常效率,为透平的非定常优化设计提供了目标参数.  相似文献   

7.
This paper focuses on the experimental investigation of the time-averaged and time-accurate aero- thermodynamics of a second stator tested in a 1.5 stage high-pressure turbine. The effect of clocking on aerodynamic and heat transfer are investigated. Tests are performed under engine representative conditions in the VKI compression tube CT3. The test program includes four different clocking positions, i.e. relative pitch-wise positions between the fh-st and the second stator. Probes located upstream and downstream of the second stator provide the thermodynamic conditions of the flow field. On the second stator airfoil, measurements are taken around the blade profile at 15, 50 and 85% span with pressure sensors and thin-film gauges. Both time-averaged and time-resolved aspects of the flow field are addressed. Regarding the time-averaged results, clocking effects are mainly observed within the leading edge region of the second stator, the largest effects being observed at 15% span. The surface static pressure distribution is changed locally, hence affecting the overall airfoil performance. For one clocking position, the thermal load of the airfoil is noticeably reduced. Pressure fluctuations are attributed to the passage of the up- stream transonic rotor and its associated pressure gradients. The pattern of these fluctuations changes noticeably as a function of docking. The time-resolved variations of heat flux and static pressure are analyzed together showing that the major effect is due to a potential interaction. The time-resolved pressure distribution integrated along the second stator surface yields the unsteady forces on the vane. The magnitude of the unsteady force is very dependent on the clocking position.  相似文献   

8.
A multi-stage axial compressor has inherently unsteady flow fields because of the following main reasons: (1) relative positions between rotor and stator airfoil; (2) the buildup of converted wakes lead to complex wake/wake and wake/airfoil interactions. The distributions of the potential flows and wakes in the flow passage are depended on the relative positions of blade rows in axial and circumference direction, so variations in the relative axial positions (axial gap) and circumferential positions (clocking effect) of stators or rotors can change these distributions, leading to different compressor efficiency. The current study presents the experimental/numerical result of a low-speed axial compressor, considering the combined effects of stator clocking and variation of axial gaps. Testing was conducted in Two-Stage Axial Compressor Facility in Harbin Institute of Technology. In the test, time averaged data were collected. The results of experimental and time accurate flow calculation for 2 axial gaps, 8 clocking positions for each gap are compared. It is shown that clocking determines the degree of interaction of a stator with the wake of another upstream stator for different gaps between the blade rows.  相似文献   

9.
多级涡轮三维黏性流场的数值模拟   总被引:1,自引:0,他引:1  
采用多叶片排网格生成技术,利用实质为标准κ-ω模型的改进型BSL双方程湍流模型对一个四级低压动力涡轮进行了数值模拟,其中多叶片排间参数传递采用“混合平面”方法。通过设计工况下计算结果和设计参数的对比,分析了此型多级涡轮的气动特点。末级导叶正弯优化设计显示弯叶片提高了此型多级涡轮的通流性能,同时也表明了弯叶片优化设计时进行多级黏性流匹配计算的必要性。  相似文献   

10.
The unsteady aerodynamic and aero-thermal performance of a first stage gas turbine bucket with thermal barrier coating (TBC) and internal cooling configuration were investigated by application of a three dimensional Navier–Stokes commercial turbomachinery oriented CFD-code. Convection and conduction were modeled for a super alloy blade with TBC.The CFD simulations were configured with a mesh domain including the nozzle and bucket interstage in order to accurately predict the fluid parameters at inlet and outlet of bucket. Comparisons to the gas turbine manufacturer data have permitted validation of the flow conditions at the inlet of the rotor.The effects of blade TBC surface temperature changes during a start-up cycle were simulated by means of an unsteady simulation, with unsteady inlet/outlet boundary conditions specified according to test data. The calculations include not only the fluid but also the solving of conduction within the blade, allowing for a correct modeling of the large difference of thermal inertia between the fluid and solid.The role of thermal barrier coatings (TBC) is, as their name suggests, to provide thermal insulation of the blade. A coating of about 100–400 μm can reduce the temperature by up to 200 °C. A TBC can be used either to reduce the need for blade cooling (by about 36%) increasing the turbine efficiency, while maintaining identical creep life of the substrate; or to increase considerably the creep life of the blade while maintaining level of blade cooling (and therefore allowing the blade to operate at a lower temperature for an identical turbine inlet temperature).  相似文献   

11.
燃气轮机燃烧室与透平交互作用研究进展   总被引:2,自引:0,他引:2  
蒋洪德  任静  尹洪 《热力透平》2013,(4):211-216,224
当代高性能燃气轮机高温部件燃烧室和透平存在着复杂的流动传热现象.随着燃机透平进口温度不断提高,部件交互作用愈发突出,直接影响到燃烧筒和叶片材料的温度水平.总结了国内外燃机中燃烧室/透平交互作用的研究进展,包括热斑、湍流度、辐射、旋流、尾迹管理等因素,归纳了典型的理论研究、实验研究、数值模拟成果.燃烧室与透平交互作用的机理研究已取得较大进展,在真机工况下的验证与应用仍需开拓.高温部件的实验平台与计算开发是支撑设计体系建设的重要基础.  相似文献   

12.
To investigate the effect of bowed/leaned vane configurations on the aerodynamic performance and aerodynamic excitation in transonic high-pressure turbine, the full three-dimensional viscous unsteady numerical simulation was performed by solving N-S equations based on SAS SST method.The influence of bowed/leaned vanes on turbine efficiency and efficiency fluctuation was investigated. The action of vane modelling to the overall aerodynamic fluctuation level and the amplitude of each vane passing frequency were analyzed. By comparing instantaneous pressure fluctuation contours in the blade passage with space-time maps, the link of the pressure fluctuation on blade surface with flow distortions was achieved, which can reveal the mechanism of the impact of the vane modelling. As the results suggest, the turbine efficiency is promoted with positively leaned and bowed vane modelling, and the fluctuation of stage turbine efficiency is repressed, which contributes to the smooth running of the turbine stage. The blade aerodynamic excitation on the rotor blade is characterized by the motion of vane trailing edge shock system, and the vane configurations can reduce the fluctuation level on the rotor blade surface effectively. For the positively leaned vane configuration, the aerodynamic excitations at the root and tip region are affected by the impact of the amplitude of the first harmonic, whereas they are reduced with the decrease of the amplitude of the second and higher harmonics at midspan. For the positively bowed vane, aerodynamic excitation is repressed by reducing the amplitude of the third harmonic at the root region, and the first harmonic at the tip region, and the amplitude of each harmonic is reduced at the middle region.  相似文献   

13.
可转导叶由于端部间隙和转轴的存在,会产生复杂的二次流动。本文对LISA涡轮进行变几何改型,采用几何约化法对该1.5级变几何涡轮进行数值模拟,详细探究了可转导叶间隙高度对可转导叶(S1)涡系的流动细节和载荷的影响,并深入研究其非定常流动对下游叶排的干涉及二次流输运过程的影响。计算结果表明:泄漏涡(LV)、角涡(CV)和通道涡(PV)共同组成了可转导叶的涡系;可转导叶端部间隙高度影响流动损失和级效率大小,设计间隙下该变几何涡轮S1时均总压损失系数Y为10.32%,涡轮时均总总效率ηtt为82.26%;可转导叶的尾缘泄漏涡使第1级动叶(R1)流动产生强非定常性;可转导叶的尾缘泄漏涡和R1泄漏涡、壁面涡是造成第2级静叶(S2)流动非定常性的主要因素。  相似文献   

14.
气冷涡轮级气热耦合非定常数值模拟   总被引:3,自引:1,他引:2       下载免费PDF全文
采用三维非定常气热耦合模拟的数值方法,对具有冷却结构的单级涡轮进行非定常流动和冷却性能进行研究,通过对非定常流场和固体温度场的分析来探讨冷气对叶片排内流场和固体温度场的影响,指出在非定常状态下,不同的动、静叶相对位置对应不同的气膜出流情况。上游周期性不稳定尾流会造成下游动叶片主流掺入气膜保护层,会造成气膜冷却效率降低。尾迹对叶片前缘的撞击引起瞬间的冲角增大,叶片气动负荷以及温度分布存在一定程度的波动,吸力面前缘受到的干扰更为明显。  相似文献   

15.
Mingfei Liu  Xingsi Han 《传热工程》2019,40(17-18):1473-1485
ABSTRACT

The high pressure turbine is subjected to the inlet hot gas resulting from the combustor, which is generally non-uniform. The strong non-uniform temperature at the turbine inlet is known as “hotstreak.” Although many studies have been performed to investigate the hotstreak migration in the turbine vane passage, the HS is generally modeled to be steady and there are relatively few studies on the unsteady oscillating hot streak (OHS). The present study performs numerical investigations on the oscillation effects on the HS migration characteristics. The OHS is modeled to be oscillating in the circumferential direction, with varying oscillation magnitude and frequency. The steady hot streak (SHS) is modeled to be positioned at the guide vanes. Comparisons between the SHS and the OHS are conducted in detail regarding the flow and heat transfer characteristics. Both of the two cases of HS are based on the NASA experiment report and the No. 4313 case in the experimental design is selected. It is found that the change of HS from steady to oscillating leads to significant differences of transient periodic fluctuating characteristics of heat load and pressure on the guide vane. The HS areas are increased significantly and the mean temperature is decreased correspondingly. The introduction of oscillation effects is found to merit a better prediction of the real HS migration features in the real turbine passage.  相似文献   

16.
Introduction Aeroelastic phenomena in the turbine stage are characterized by instability, continuous interaction and energy exchange between the fluid and the structure; so they cannot be studied properly in the frame of each of uncoupled domains separately (aerodynamics or structural dynamics). The traditional approach in flutter calculations of bladed disks is based on frequency domain analysis[1,2], in which the blade motion is assumed to be a harmonic function of time with a constant phas…  相似文献   

17.
To predict the unsteady aerodynamic loads of horizontal-axis wind turbines (HAWTs) during operations under yawing and pitching conditions, an unsteady numerical simulation method is proposed. This method includes a nonlinear lifting line method to compute the aerodynamic loads on the blades and a time-accurate free-vortex method to simulate the wake. To improve the convergence property in the nonlinear lifting line method, an iterative algorithm based on the Newton–Raphson method is developed. To increase the computational efficiency and the accuracy of the calculation, a new wake vortex model consisting of the vortex core model, the vortex sheet model and the tip vortex model is used. Wind turbines with different diameters, such as NREL Phase VI, the TU Delft model turbine and the Tjæreborg wind turbine, are used to validate the method for rotors operating at given yaw and/or pitch angles and during yawing and/or pitching processes at different wind speeds. The results, including the blade loads, the rotor torque and the locations of the tip vortex cores in the wake, agree well with the measured data and the computed data. It is shown that the proposed method can be used for predictions of unsteady aerodynamic loads and rotor wakes in the operational processes of blade pitching and/or rotor yawing.  相似文献   

18.
针对工程上常用的基于叶片数约化的涡轮非定常计算方法,为了掌握导叶约化中心位置对于涡轮内部流动非定常计算结果的影响规律,对导叶前缘约化、导叶尾缘约化、不约化三个算例进行了非定常计算与对比分析.研究结果表明:导叶前缘约化方式对于涡轮气动性能时均值影响量级在1%以上,而导叶尾缘约化方式的影响不到前者的1/2;两种约化方式均能...  相似文献   

19.
Wind turbine aerodynamics and loads control in wind shear flow   总被引:1,自引:0,他引:1  
Wind turbine is subjected to some asymmetrical effects like wind shear, which will lead to unsteady blade airloads and performance. Fatigue loads can lead to damage of turbine components and eventually to failures. It is evident that the variation of the velocity over the rotor disc has an influence on the blade and introduces both flap-wise and edge-wise fatigue damage on the blade as a result of moment fluctuations in the two directions. The flap-wise moments on the blade are the origin of the rotor yaw and tilt moments which transmit to the turbine structure through the drive train to the yaw system and the tower. A lifting surface method with time marching free wake model is used to investigate the periodic unsteady nature in the wind shear. Individual pitch control (IPC) that is applied nowadays is the most advanced active control to reduce the fatigue. The blade airloads and performance of the turbine are also predicted under IPC control. It is found that IPC of the fluctuating blade root flap-wise moment can reduce the flap-wise fatigue damage remarkably while the blade root edge-wise moments are less sensitive to the varying blade pitch than the blade root flap-wise moments.  相似文献   

20.
To improve knowledge of the unsteady aerodynamic characteristics and interference effects of a floating offshore wind turbine (FOWT), this article focuses on the platform surge motion of a full configuration wind turbine with the rotating blades, hub, nacelle, and tower shapes. Unsteady aerodynamic analyses considering the moving motion of an entire configuration wind turbine have been conducted using an advanced computational fluid dynamics (CFD) and a conventional blade element momentum (BEM) analyses. The present CFD simulation is based on an advanced overset moving grid method to accurately consider the local and global motion of a three-dimensional wind turbine. The effects of various oscillation frequencies and amplitudes of the platform surge motion have been widely investigated herein. Three-dimensional unsteady flow fields around the moving wind turbine with rotating blades are graphically presented in detail. Complex flow interactions among blade tip vortices, tower shedding vortices, and turbulent wakes are physically observed. Comparisons of different aerodynamic analyses under the periodic surge motions are summarized to show the potential distinction among applied numerical methods. The present result indicates that the unsteady aerodynamic thrust and power tend to vary considerably depending on the oscillation frequency and amplitude of the surge motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号