共查询到20条相似文献,搜索用时 0 毫秒
1.
Heim WA Coale KH Stephenson M Choe KY Gill GA Foe C 《Environmental science & technology》2007,41(10):3501-3507
Recent studies indicate significant amounts of mercury (Hg) are annually transported into the San Francisco Bay-Delta (Bay-Delta) as a result of historic gold and Hg mining activities. We examined temporal and spatial variation in concentrations of total Hg (Hg(T)) and monomethylmercury (MMHg) in surficial sediments of various ecosystem types in the Bay-Delta. We sampled surficial sediments across the Bay-Delta system and found Hg(T) sediment concentrations in the central Delta were generally 100-200 ng g(-1) and increased westward through Suisun Bay to 250-350 ng g(-1). MMHg concentrations in the central Delta were between 1 and 3 ng g(-1), while those in sediments in the perimeter waterways and adjacent bays were less than 1 ng g(-1). Six sites were monitored monthly for over a year to identify seasonal changes in Hg sediment concentrations. Hgtau sediment concentrations ranged from 48 to 382 ng g(-1) and varied as a function of location not season. However, MMHg concentrations varied seasonally, increasing from 1 ng g(-1) during winter months to 6 ng g(-1) during spring and summer. Transects conducted at three marshes in the central Delta revealed MMHg sediment concentrations of 4-8 ng g(-1) at the interior and 2 ng g(-1) at the exterior of the marshes. Habitat type was a major factor controlling MMHg concentration and the MMHg to Hg(T) ratio in sediments of the Bay-Delta. MMHg was significantly correlated to Hgt (r2 = 0.49) in marsh sediments. 相似文献
2.
Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments 总被引:1,自引:0,他引:1
Biotic transformation of inorganic mercury, Hg(II), to mono methyl mercury (MeHg) is proposed to be largely controlled by passive uptake of neutral Hg complexes by sulfate reducing bacteria (SRB). In this study, the chemical speciation of Hg(II) in seven locally contaminated sediments covering environments such as (i) brackish water, (ii) low-productivity freshwater, and, (iii) high-productivity freshwater was related to potential Hg methylation rates, determined by incubation at 23 degrees C for 48 h under N2(g), and to total MeHg concentrations in sediments. Pore water speciation was modeled considering Hg complexes with halides, organic thiols [Hg(SR)2(aq), associated to dissolved organic matter], monosulfides, and bisulfides. The sum of neutral mercury sulfides [Hg(SH)20(aq)] and [HgS0(aq)] was significantly, positively (p < 0.001, n = 20) correlated to the specific methylation rate constant (Km, day(-1)) at depths of 5-100 cm in two brackish water sediments. Total Hg, total mercury sulfides or Hg(SR)2(aq) in pore water gave no significant relationships with Km. In two subsets of freshwater sediments, neutral mercury sulfides were positively correlated to total Hg in pore water, and therefore, total Hg also gave significant relationships with Km. The sum of [Hg(SH)20(aq)] and [HgS0(aq)] was significantly, positively correlated to total sediment MeHg (microg kg-1) in brackish waters (p < 0.001, n = 23), in southern, high-productivity freshwaters (p < 0.001, n = 20), as well as in northern, low-productivity freshwater (p = 0.048, n = 6). The slopes (b, b') of the relationships Km (day-1) = a + b([Hg(SH)20(aq)] + [HgS0(aq)]) and MeHg (microg kg-1) = a' + b'([Hg(SH)20(aq)] + [HgS0(aq)]) showed an inverse relationship with the C/N ratio, supposedly reflecting differences in primary production and energy-rich organic matter availability among sites. We conclude that concentrations of neutral inorganic mercury sulfide species, together with the availability of energy-rich organic matter, largely control Hg methylation rates in contaminated sediments. Furthermore, Hg(SH)20(aq) is suggested to be the dominant species taken up by MeHg producing bacteria in organic-rich sediments without formation of HgS(s). 相似文献
3.
We studied the effect of zooplankton diet on MeHg accumulation in different zooplankton size-fractions from lakes of different trophic status. Using fatty acid biomarkers, we tested the hypotheses that (a) variations of MeHg concentrations are determined bythe taxonomic composition of zooplankton and (b) concentrations of dietary algal and bacterial compounds can predict MeHg concentrations of seston (10-64 microm), micro- (100-200 microm), meso- (200-500 microm), and macrozooplankton (>500 microm) in lakes on Vancouver Island, Canada. MeHg concentrations increased from seston (4-48 ng g dry weight(-1)) to macrozooplankton (94-240 ng g dry weight(-1)), indicating that MeHg accumulated as a function of plankton size. Results from linear regression analysis showed that MeHg concentrations were not significantly related to the taxonomic composition of zooplankton. However, using dietary lipid biomarkers, we demonstrated that bacterial diet (R2 = 0.50; p < 0.01) could better predict variations of MeHg concentrations in zooplankton than essential algal diet (R2 = 0.35; p < 0.01). Because MeHg accumulation within the planktonic food web was higher (20x) than the observed accumulation of total bacterial (6.5x) and algal (4.7x) diet biomarkers, zooplankton retained dietary MeHg more efficiently than bacterial and algal diet compounds. These results indicate that MeHg of macrozooplankton, the preferred prey size of planktivorous fish, is more efficiently transferred than essential diet compounds to organisms at higher trophic levels. 相似文献
4.
Obrist D 《Environmental science & technology》2012,46(11):5921-5930
This study characterized distribution patterns of monomethyl mercury (MeHg) and areal mass of total mercury (THg) and MeHg across U.S. upland forests. MeHg concentrations increased from surface litter (average: 0.14 μg kg(-1)) to intermediate (0.47 μg kg(-1)) and deeper, decomposed litter (1.43 μg kg(-1)). MeHg concentrations were lower in soils (0.10 μg kg(-1) at 0-20 cm depth; 0.06 μg kg(-1) at >20 cm depth). Ratios of MeHg to THg were higher in litter compared to soils. In soils, MeHg concentrations positively correlated with THg across all sites, and MeHg concentrations also increased with C content and latitude. THg areal mass ranged from 41.6 g ha(-1) to 268.8 g ha(-1). Largest THg mass at all sites was sequestered in soils (average of 91%), followed by litter (8%) and aboveground biomass (<1%). MeHg mass (litter plus soils only) ranged from 75 to 443 mg ha(-1), of which 88% was found in soils. Both THg and MeHg mass correlated with latitude, with average mass increases of 10.6 g ha(-1) (THg) and 20 μg ha(-1) (MeHg) per degree latitude, indicating that highest THg and MeHg accumulation in upland forests are expected in northern sites. 相似文献
5.
Evidence for control of mercury accumulation rates in Canadian High Arctic lake sediments by variations of aquatic primary productivity 总被引:3,自引:0,他引:3
Outridge PM Sanei LH Stern GA Hamilton PB Goodarzi F 《Environmental science & technology》2007,41(15):5259-5265
Climate warming in the 20th Century has had profound effects on the limnology of High Arctic lakes, including substantial increases in autochthonous primary productivity (APP). Here, we report organic carbon and Hg core profiles from two lakes which support the hypothesis that 20th Century increases in sedimentary Hg at these latitudes were largely driven by APP increases, via Hg scavenging by algae and/or suspended detrital algal matter. Hydrocarbons quantitatively released by thermal cracking of algal-derived organic matter ("S2" carbon) were used to reconstruct past APP. Variation of S2 flux accounted for 87-91% of the variance in total Hg flux in the study lakes since 1854. Mercury and S2 carbon were also associated during the pre-Industrial Period, co-varying by as much as 30% during past warm/cool periods. As a test of the hypothesis, predicted values for 20th Century [Hg] were derived from pre-1900 Hg-S2 relationships. Measured 20th Century [Hg] was on average only 6-11% higher than that predicted in one lake, and 33% higher in the other. S2-normalization of [Hg] in the latter lake suggested that 78% of the average increase in 20th Century [Hg] could be explained by scavenging. These findings suggest that the atmospheric contribution of long-range anthropogenic Hg to High Arctic lakes may have been overestimated by several-fold because of this climate-driven process, and was responsible for no more than 22% of the 20th Century [Hg] increase in the study lakes. 相似文献
6.
Sato N Ishii K Satoh A Tanaka Y Hidaka T Nagaoka N 《Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan》2005,46(6):298-304
Fifty-two samples of broiled eels and broiled eel liver were analyzed for total mercury (total Hg) and methyl mercury. The mean concentrations of total Hg in broiled eels and broiled eel liver were 0.21 ppm and 0.10 ppm, respectively. Meanwhile, the mean concentrations of methyl mercury in broiled eels and broiled eel liver were 0.085 ppm and 0.039 ppm, respectively. The rate of methyl mercury to total Hg mainly ranged from 60 to 80% in broiled eels and from 35 to 65% in broiled eel liver. The total Hg concentrations of 2 samples of broiled eels and one sample of broiled eel liver exceeded the provisional regulation limit (0.4 ppm) of total Hg in fish in Japan. In these samples, the rates of methyl mercury to total Hg were lower than 20%. The muscles and the skin of broiled eels were measured separately. The ratios of skin to muscle concentration of total Hg and methyl mercury were mainly in the range from 1/10 to 1/4. The mean intakes of total Hg from broiled eels and broiled eel liver per individual were 24.6 microg and 3.1 microg, respectively. The mean intakes of methyl mercury from broiled eels and broiled eel liver per individual were 10.4 microg and 1.2 microg, respectively. 相似文献
7.
8.
Hourly averaged gaseous elemental Hg (GEM) concentrations and hourly integrated reactive gaseous Hg (RGM), and particulate Hg (Hg(p)) concentrations in the ambient air were measured at Huntington Forest in the Adirondacks, New York from June 2006 to May 2007. The average concentrations of GEM, RGM, and Hg(p) were 1.4 +/- 0.4 ng m(-3), 1.8 +/- 2.2 pg m(-3), and 3.2 +/- 3.7 pg m(-3), respectively. RGM represents < 3.5% of total atmospheric Hg or total gaseous Hg (TGM: GEM + RGM) and Hg(p) represents < 3.0% of the total atmospheric Hg. The highest mean concentrations of GEM, RGM, and Hg(p) were measured during winter and summer whereas the lowest mean concentrations were measured during spring and fall. Significant diurnal patterns were apparent in warm seasons for all species whereas diurnal patterns were weak in cold seasons. RGM was better correlated with ozone concentration and temperature in both warm (rho (RGM - ozone) = 0.57, p < 0.001; rho (RGM - temperature) = 0.62, p < 0.001) and cold seasons (rho (RGM - ozone) = 0.48, p = 0.002; rho (RGM - temperature) = 0.54, p = 0.011) than the other species. Potential source contribution function (PSCF) analysis was applied to identify possible Hg sources. This method identified areas in Pennsylvania, West Virginia, Ohio, Kentucky, Texas, Indiana, and Missouri, which coincided well with sources reported in a 2002 U.S. mercury emissions inventory. 相似文献
9.
Sulfate-reducing bacteria (SRB) have been identified as the primary organisms responsible for monomethylmercury (MeHg) production in aquatic environments, but little is known of the physiologyand biochemistry of mercury(Hg) methylation. Corrinoid compounds have been implicated in enzymatic Hg methylation, although recent experiments with a vitamin B12 inhibitor indicated that incomplete-oxidizing SRB likely do not use a corrinoid-enzyme for Hg methylation, whereas experiments with complete-oxidizing SRB were inconclusive due to overall growth limitation. Here we explore the role of corrinoid-containing methyltransferases, which contain a cobalt-reactive center, in Hg methylation. To this end, we performed cobalt-limitation experiments on two SRB strains: Desulfococcus multivorans, a complete-oxidizer that uses the acetyl-CoA pathway for major carbon metabolism, and Desulfovibrio africanus, an incomplete-oxidizer that does not contain the acetyl-CoA pathway. Cultures of D. multivorans grown with no direct addition of Co or B12 became cobalt-limited and produced 3 times less MeHg per cell than control cultures. Differences in growth rate and Hg bioavailability do not account for this large decrease in MeHg production upon Co limitation. In contrast, the growth and Hg methylation rates of D. africanus cultures remained nearly constant regardless of the inorganic cobalt and vitamin B12 concentrations in the medium. These results are consistent with mercury being methylated by different pathways in the two strains: catalyzed by a B12-containing methyltransferase in D. multivorans and a B12-independent methyltransferase in D. africanus. If complete-oxidizing SRB like D. multivorans account for the bulk of MeHg production in coastal sediments as reported, the ambient Co concentration and speciation may control the rate of Hg methylation. 相似文献
10.
Dredging operations, resuspension events during storms, and bioturbation alter the oxic state of estuarine sediments and induce changes in the composition of dissolved and particle-associated natural organic matter. These changes may alter the distribution of hydrophobic organic chemicals (HOCs) in sediments and their diffusive flux across the sediment-water interface. In this study, the impact of aerating anoxic sediments on the distribution and diffusive flux of a model HOC, 2,2',4,4'-tetrachlorobiphenyl (TeCB), was investigated. Anoxic estuarine sediments collected from three sites along a salinity gradient were used to determine site-specific apparent sorption coefficients for porewater dissolved organic carbon (Kpwdoc) and sediment organic carbon (Koc) under anoxic and oxic conditions. A two-compartment sediment flux model was employed to examine the diffusive flux of TeCB under both oxic states. Aeration of anoxic porewaters resulted in significant decreases in porewater dissolved organic matter (DOMpw) aromaticity as indicated by declines in molar absorptivity at 254 nm (p < 0.005). Aeration also resulted in a 9-13% decrease in DOMpw concentration (p < 0.005) at the two sites exhibiting lower ionic strengths; the high ionic strength site did not exhibit a significant change in DOMpw concentration (p > 0.10). The impact of aeration on TeCB distribution and diffusive flux appeared to be site-specific. Aeration of anoxic sediments induced a significant 1.4 log unit reduction in Kpwdoc at the lowest ionic strength site (p < 0.0005), while sediments from the intermediate ionic strength site exhibited a significant 0.6 log unit increase (p < 0.005). No significant change in sorption to DOMpw was observed for the high ionic strength site (p > 0.10). The sediment displaying the drop in Kpwdoc also exhibited a significant 0.4 log unit drop in Koc (p < 0.01), while the other two sites did not exhibit significant aeration-induced changes in sorption to particle-associated organic matter (p > 0.10). No significant change in diffusive flux was observed for two sites (p > 0.10), while a significant 89-110 mg m(-2) yr(-1) increase in diffusive flux was observed at the low ionic strength site (p < 0.10). This latter result represented approximately a doubling in diffusive flux. In the systems studied, facilitation of TeCB transport across the sediment-water interface by organic colloids did not appear important. 相似文献
11.
O'Driscoll NJ Poissant L Canário J Lean DR 《Environmental science & technology》2008,42(14):5125-5130
In situ mesocosm experiments were performed to examine dissolved gaseous mercury (DGM), mercury volatilization, and sediment interactions in a frozen freshwater fluvial lake (Lake St. Louis, Beauharnois, QC). Two large in situ mesocosm cylinders, one open-bottomed and one close-bottomed (no sediment diffusion), were used to isolate the water column and minimize advection. Mercury volatilization over the closed-bottom mesocosm did not display a diurnal pattern and was low (mean = -0.02 ng m(-2) h(-1), SD = 0.28, n=71). Mercury volatilization over the open-bottom mesocosm was also low (mean = 0.24 ng m(-2) h(-1), SD = 0.08, n=96) however a diurnal pattern was observed. Low and constant concentrations of DGM were observed in surface water in both the open-bottomed and close-bottomed mesocosms (combined mean = 27.6 pg L(-1), SD = 7.2, n=26). Mercury volatilization was significantly correlated with solar radiation in both the close-bottomed (Pearson correlation = 0.33, significance = 0.005) and open-bottomed (Pearson correlation = 0.52, significance = 0.001) mesocosms. However, DGM and mercury volatilization were not significantly correlated (at the 95% level) in either of the mesocosms (significance = 0.09 in the closed mesocosm and significance = 0.9 in the open mesocosm). DGM concentrations decreased with depth (from 62 to 30 pg L(-1)) in the close-bottomed mesocosm but increased with depth (from 30 to 70 pg L(-1)) in the open-bottomed mesocosm suggesting a sediment source. DGM concentrations were found to be high in samples of ice melt (mean 73.6 pg L(-1), SD = 18.9, n=6) and snowmelt (mean 368.2 pg L(-1), SD = 115.8, n=4). These results suggest that sediment diffusion of mercury and melting snow and ice are important to DGM dynamics in frozen Lake St. Louis. These processes may also explain the lack of significant correlations observed in the DGM and mercury volatilization data. 相似文献
12.
Kawakami H Amakura Y Tsutsumi T Sasaki K Iketsu A Inasaki M Kubota E Toyoda M 《Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan》2010,51(5):258-263
In this study, we analyzed the concentrations of mercury and dioxins in tuna with various fat contents (akami; the leaner meat, Chutoro; the belly area of the tuna along the side of the fish between the akami and the otoro. Otoro; the fattiest portion of the tuna) in wild and farmed bluefin tuna and farmed southern bluefin tuna. In the three kinds of tuna, average dioxins concentrations in Akami, chutoro and otoro were 1.7, 4.7 and 9.6 pg TEQ/g, respectively. The dioxins concentration in all three regions of tuna was in direct proportion to the fat content. In the farmed bluefin tuna, the dioxins concentration was almost the same as that of the wild tuna, but differed from that of the farmed southern bluefin tuna. Average total mercury concentration based on wet weight in akami was 0.42 μg/g, being higher than the values of 0.36 μg/g of chutoro and 0.31 μg/g of otoro, and in inverse proportion to the fat content. In all three regions, the total mercury concentration of the wild bluefin tuna was equal to that of the farmed tuna. The total mercury concentration in the latter was two to three times higher than that of the farmed southern bluefin tuna. If the Japanese intake is one fin of tuna (80 g) a day, the daily intake levels of dioxins and methyl mercury can be estimated as 0.48-37 pg TEQ/kg bw and 0.21-0.90 μg/kg bw, respectively. 相似文献
13.
Burke IT Boothman C Lloyd JR Livens FR Charnock JM McBeth JM Mortimer RJ Morris K 《Environmental science & technology》2006,40(11):3529-3535
Technetium is a redox active radionuclide, which is present as a contaminant at a number of sites where nuclear fuel cycle operations have been carried out. Recent studies suggest that Tc(VII), which is soluble under oxic conditions, will be retained in sediments as Fe(III)-reducing conditions develop, due to reductive scavenging as hydrous TcO2. However, the behavior of technetium during subsequent reoxidation of sediments remains poorly characterized. Here, we describe a microcosm-based approach to investigate the reoxidation behavior of reduced, technetium-contaminated sediments. In reoxidation experiments, the behavior of Tc was strongly dependent on the nature of the oxidant. With air, reoxidation of Fe(II) and, in sulfate-reducing sediments, sulfide occurred accompanied by approximately 50% remobilization of Tc to solution as TcO4-. With nitrate, reoxidation of Fe(II) and, in sulfate-reducing sediments, sulfide only occurred in microbially active experiments where Fe(II) and sulfide oxidation coupled to nitrate reduction was occurring. Here, Tc was recalcitrant to remobilization with <10% Tc remobilized to solution even when extensive Fe(II) and sulfide reoxidation had occurred. X-ray absorption spectroscopy on reoxidized sediments suggested that 15-50% of Tc bound to sediments was present as Tc(VII). Overall, these results suggest that Tc reoxidation behavior is not directly coupled to Fe or S oxidation and that the extent of Tc remobilization is dependent on the nature of the oxidant. 相似文献
14.
Lindeberg C Bindler R Renberg I Emteryd O Karlsson E Anderson NJ 《Environmental science & technology》2006,40(1):90-95
Given the current scenario of increasing global temperatures, it is valuable to assess the potential influence of changing climate on pollution distribution and deposition. In this study we use long-term sediment records from three lakes (spanning ca. 1000, 4800, and 8000 years, respectively) from the Greenland west coast to assess recent and long-term variations in mercury (Hg) and lead (Pb), including stable Pb isotopes (206Pb and 207Pb), in terms of pollution and climate influences. The temporal trends in sediment deposited from about the mid-19th century and forward are in general agreement with the history of industrial emissions at lower latitudes. Therefore, in recent sediment a possible influence from changing climate is difficult to assess. However, by using deeper sediment layers we show that changes in Greenland climate caused changes in the lake influx of material from regional aeolian activity, which resulted in large fluctuations in Hg and Pb concentrations and 206Pb/207Pb ratios. The aeolian material is primarily derived from glacio-fluvial material with low Hg and Pb concentrations and a different isotopic composition. For one of the lakes, the fluctuations in Hg concentrations (10 to 70 ng g(-1)) prior to the 19th century are equal to the anthropogenic increase in the uppermost layers, suggesting that when studying recent concentrations and time trends of pollution in relatively low-contaminated areas such as the Arctic, the early natural fluctuations must be considered. 相似文献
15.
Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems 总被引:1,自引:0,他引:1
St Louis VL Rudd JW Kelly CA Hall BD Rolfhus KR Scott KJ Lindberg SE Dong W 《Environmental science & technology》2001,35(15):3089-3098
The forest canopy was an important contributor to fluxes of methyl mercury (MeHg) and total mercury (THg) to the forest floor of boreal uplands and wetlands and potentially to downstream lakes, at the Experimental Lakes Area (ELA), northwestern Ontario. The estimated fluxes of MeHg and THg in throughfall plus litterfall below the forest canopy were 2 and 3 times greater than annual fluxes by direct wet deposition of MeHg (0.9 mg of MeHg ha(-1)) and THg (71 mg of THg ha(-1)). Almost all of the increased flux of MeHg and THg under the forest canopy occurred as litterfall (0.14-1.3 mg of MeHg ha(-1) yr(-1) and 110-220 mg of THg ha(-1) yr(-1)). Throughfall added no MeHg and approximately 9 mg of THg ha(-1) yr(-1) to wet deposition at ELA, unlike in other regions of the world where atmospheric deposition was more heavily contaminated. These data suggest that dry deposition of Hg on foliage as an aerosol or reactive gaseous Hg (RGM) species is low at ELA, a finding supported by preliminary measurements of RGM there. Annual total deposition from throughfall and litterfall under a fire-regenerated 19-yr-old jack pine/birch forest was 1.7 mg of MeHg ha(-1) and 200 mg of THg ha(-1). We found that average annual accumulation of MeHg and THg in the surficial litter/fungal layer of soils since the last forest fire varied between 0.6 and 1.6 mg of MeHg ha(-1) and between 130 and 590 mg of THg ha(-1) among sites differing in drainage and soil moisture. When soil Hg accumulation sites were matched with similar sites where litterfall and throughfall were collected, measured fluxes of THg to the forest floor (sources) were similar to our estimates of longterm soil accumulation rates (sinks), suggesting that the Hg in litterfall and throughfall is a new and not a recycled input of Hg to forested ecosystems. However, further research is required to determine the proportion of Hg in litterfall that is being biogeochemically recycled within forest and wetland ecosystems and, thus, does not represent new inputs to the forest ecosystem. 相似文献
16.
St Louis VL Rudd JW Kelly CA Bodaly RA Paterson MJ Beaty KG Hesslein RH Heyes A Majewski AR 《Environmental science & technology》2004,38(5):1348-1358
For the past 9 years, we experimentally flooded a wetland complex (peatland surrounding an open water pond) at the Experimental Lakes Area (ELA), northwestern Ontario, Canada, to examine the biogeochemical cycling of methyl mercury (MeHg) in reservoirs. Using input-output budgets, we found that prior to flooding, the wetland complex was a net source of approximately 1.7 mg MeHg ha(-1) yr(-1) to downstream ecosystems. In the first year of flooding, net yields of MeHg from the reservoir increased 40-fold to approximately 70 mg MeHg ha(-1) yr(-1). Subsequently, annual net yields of MeHg from the reservoir declined (10-50 mg MeHg ha(-1) yr(-1)) but have remained well above natural levels. The magnitude and timing of Hg methylation in the flooded peat portion of the wetland reservoir were very different than in the open water region of the reservoir. In terms of magnitude, net Hg methylation rates in the peat in the first 2 years of flooding were 2700 mg ha(-1) yr(-1), constituting over 97% of the MeHg produced at the whole-ecosystem level. But in the following 3 years, there was a large decrease in the mass of MeHg in the flooded peat due to microbial demethylation. In contrast, concentrations of MeHg in the open water region and in zooplankton, and body burdens of Hg in cyprinid fish, remained high for the full 9 years of this study. Microbial activity in the open water region also remained high, as evidenced by continued high concentrations of dissolved CO2 and CH4. Thus, the large short-term accumulation of MeHg mass in the peat appeared to have only a small influence on concentrations of MeHg in the biota; rather MeHg accumulation in biota was sustained by the comparatively small ongoing net methylation of Hg in the flooded pond where microbial activity remained high. In large reservoirs, where the effects of wind and fetch are greater than in the small experimental reservoir we constructed, differences can occur in the timing and extent of peat and soil erosion, effecting either transport of MeHg to the food chain or the fueling of microbial activity in open water sediments, both of which could have important long-term implications for MeHg concentrations in predatory fish. 相似文献
17.
目的了解吉林省内部分市售小龙虾Hg~(2+)、甲基汞、乙基汞污染水平。方法采集吉林省松花江流域和非松花江流域内的小龙虾样品,粉碎后经5mol/LHCl提取,C_(18)色谱柱分离,高效液相色谱-电感耦合等离子体质谱检测样品中Hg~(2+)、甲基汞、乙基汞含量。结果在采集的两流域小龙虾样品中,虾黄和虾肉均未检出Hg~(2+)和乙基汞,小龙虾样品中汞的主要存在形态是甲基汞,未发现超标现象。结论小龙虾中甲基汞含量均低于限值,可安全使用。 相似文献
18.
Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments 总被引:2,自引:0,他引:2
Miller TR Heidler J Chillrud SN DeLaquil A Ritchie JC Mihalic JN Bopp R Halden RU 《Environmental science & technology》2008,42(12):4570-4576
The biocides triclosan and triclocarban are wastewater contaminants whose occurrence and fate in estuarine sediments remain unexplored. We examined contaminant profiles in 137Cs/7Be-dated sediment cores taken near wastewater treatment plants in the Chesapeake Bay watershed (CB), Maryland and Jamaica Bay(JB), New York. In JB, biocide occurrences tracked the time course of biocide usage and wastewater treatment strategies employed, first appearing in the 1950s (triclocarban) and 1960s (triclosan), and peaking in the late 1960s and 1970s (24 +/- 0.54 and 0.8 +/- 0.4 mg/kg dry weight, respectively). In CB, where the time of sediment accumulation was not as well constrained by 137Cs depth profiles, triclocarban was only measurable in 137Cs-bearing sediments, peaking at 3.6 +/- 0.6 mg/ kg midway through the core and exceeding 1 mg/kg in recent deposits. In contrast, triclosan concentrations were low or not detectable in the CB core. Analysis of CB sediment by tandem mass spectrometry produced the first evidence for complete sequential dechlorination of triclocarban to the transformation products dichloro-, monochloro-, and unsubstituted carbanilide, which were detected at maxima of 15.5 +/- 1.8, 4.1 +/- 2.4, and 0.5 +/- 0.1 mg/kg, respectively. Concentrations of all carbanilide congeners combined were correlated with heavy metals (R2 > 0.64, P < 0.01), thereby identifying wastewater as the principal pathway of contamination. Environmental persistence over the past 40 years was observed for triclosan and triclocarban in JB, and for triclocarban's diphenylurea backbone in CB sediments. 相似文献
19.
While many studies have examined Hg(II) binding ligand in natural dissolved organic matter, determined ligand concentrations far exceed natural Hg(II) concentrations. This ligand class may not influence natural Hg(II) complexation, given the reverse relation between ligand concentration and metal-ligand binding strength. This study used a new competing ligand, thiosalicylic acid, in a competitive ligand exchange method in which water-toluene extraction was used to determine extremely strong Hg(II) binding sites in estuarine and coastal waters (dissolved [Hg] = 0.5-8 pM). Thiosalicylic acid competition lowered the detection limit of Hg(II) complexing ligand by 2 orders of magnitude from values found by previous studies; the determined Hg(II) complexing ligand ranged from 13 to 103 pM. The logarithmic conditional stability constants between Hg(II) and Hg(II) complexing ligand (Kcond' = [HgL]/([Hg2+][L']), [L'] = total [L] - [HgL]) ranged from 26.5 to 29.0. Applying the same method for chloride competition detected another class of ligand that is present from 0.5 to 9.6 nM with log conditional stability constants ranging from 23.1 to 24.4. A linear relationship was observed between the log conditional stability constant and log Hg(II) complexing ligand concentration, supporting the hypothesis that Hg(II) binding ligand should be characterized as a series or continuum of binding sites on natural dissolved organic matter. Calculating Hg(II) complexation using the conditional stability constants and ligand concentrations determined in this study indicates that >99% of the dissolved mercury is complexed by natural ligand associated with dissolved organic matter in estuarine and coastal waters of Galveston Bay, Texas. 相似文献