首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 3D structure reconstruction of gold core-silver shell nanoparticles by electron tomography is combined with optical dark-field spectroscopy. Electron tomography allows segmentation of the particles into core and shell subvolumes and facilitates avoiding Bragg diffraction artifacts inherent in 2D images. This advantage proves essential for accurate correlation of plasmon spectra and structure. We find that for the nanoparticles of near-spherical shape studied here the plasmon resonances depend on the relative size of the core and shell, rather than on their exact shapes and concentricity. A remarkable dependence of the spectral shape on the permittivity of the surrounding medium is also demonstrated, suggesting that core-shell nanoparticles can be used as ratiometric sensors with a very high dynamic range.  相似文献   

2.
Gold and Au@SiO2 nanoparticles were synthesized and surface-functionalized by initiators for atom transfer radical polymerization (ATRP), either using a thiol or a trialkoxysilane anchor group for the immobilization of the initiating functionality. The thus obtained initiator-capped gold systems were applied in polymerizations of various monomers, such as styrene, methacrylic acid trimethyloxysilyl propylester and isoprene and copolymers thereof. The final inorganic-organic core-shell nanoparticles were characterized applying different techniques such as electron microscopy and light scattering. Kinetic studies of the polymerizations revealed that they were highly controlled and therefore the thickness of the polymer shell could be easily adjusted. The obtained nanoparticles formed stable suspensions in various organic solvents and can therefore be used as building blocks for polymer nanocomposites.  相似文献   

3.
Multi-island single electron transistor is an important kind of the single electron transistor, which is convenient to realize the controllable room temperature operation. A novel semi-empirical compact model for the Multi-island single electron transistor is proposed. The new approach combines the orthodox theory of the single electron tunneling through single coulomb island and a novel empirical analysis procedure for the chain of multi coulomb islands to solve the current of the whole multi-island single electron transistor. The tunneling rates are calculated based on the orthodox theory for the single electron tunneling. The tunneling currents representing the first splitted peaks in the coulomb oscillation curves are calculated according to the assumption that the currents through all the coulomb islands are equal to each other at the stable states, while the currents representing the other splitted peaks are constructed and merged together according to the empirical analysis. The model is verified by the traditional SET simulator SIMON and shows much faster calculation speed than SIMON. Therefore, the novel compact model is suitable for the large scale MISET circuit simulation.  相似文献   

4.
We present an approach, and its implementation in a computer program, for the three-dimensional (3-D) simulation of realistic single electron transistor (SET) structures, in which subregions with different degrees of quantum confinement are simultaneously considered. The proposed approach is based on the self-consistent solution of the many body Schrodinger equation with density functional theory and on the computation of the conductance of tunnel constrictions through the solution of the 3-D Schrodinger equation with open boundary conditions. We have developed an efficient code (ViDES) based on such an approach. As examples of addressable SET structures, we present the simulation of a SET, one defined by metal gates on an AlGaAs/GaAs heterostructures, and of a SET defined by etching and oxidation on the silicon-on-insulator material system. Since SETs represent prototypical nanoscale devices, the code may be a valuable tool for the investigation and optimization of a broad range of nanoelectronic solid-state devices.  相似文献   

5.
We report the electronic transport on n-type silicon single electron transistors (SETs) fabricated in complementary metal oxide semiconductor (CMOS) technology. The n-type metal oxide silicon SETs (n-MOSSETs) are built within a pre-industrial fully depleted silicon on insulator (FDSOI) technology with a silicon thickness down to 10 nm on 200 mm wafers. The nominal channel size of 20 × 20 nm(2) is obtained by employing electron beam lithography for active and gate level patterning. The Coulomb blockade stability diagram is precisely resolved at 4.2 K and it exhibits large addition energies of tens of meV. The confinement of the electrons in the quantum dot has been modeled by using a current spin density functional theory (CS-DFT) method. CMOS technology enables massive production of SETs for ultimate nanoelectronic and quantum variable based devices.  相似文献   

6.
Silver nanoparticles are notoriously susceptible to oxidation, yet gold nanoparticles coated in silver exhibit a unique electronic interaction that occurs at the interface of the two metals, leading to enhanced stability properties for the silver shell. In order to probe the phenomenon, the stability of gold nanoparticles coated by silver was studied in the presence of various chloride-containing electrolytes. It was found that a critical silver shell thickness of approximately 1 nm exists that cannot be oxidatively etched from the particle surface: this is in contrast to the observation of complete oxidative etching for monometallic silver nanoparticles. The results are discussed in terms of particle composition, structure and morphology before and after exposing the particles to the electrolytes. Raman analysis of the reporter molecule 3-amino-1,2,4-triazole-5-thiol adsorbed on the particle surface illustrates the feasibility of using gold coated by silver nanoparticle probes in sensing applications that require the presence of high levels of salt. The results provide insight into the manipulation of the electronic and stability properties for gold- and silver-based nanoparticles.  相似文献   

7.
Single electron transistor (SET) has become a promising candidate for the key device of logic circuit in the near future. The advances of recent 5 years in the modeling of SETs are reviewed for the simulation of SET/hybrid CMOS-SET integrated circuit. Three dominating SET models, Monte Carlo model, master equation model and macro model, are analyzed, tested and compared on their principles, characteristics, applicability and development trend. The Monte Carlo model is suitable for SET structure research and simulation of small scale SET circuit, while the analytical model based on combination with master equation and macro model is suitable to simulate the SET circuit at balanceable efficiency and accuracy.  相似文献   

8.
We study effects of strong electron-electron and electron-phonon correlations in single electron traps in metal-oxide-semiconductor field effect transistors (FETs). In order to explain the strong suppression of single electron tunneling in the trap, we introduce a model in which the excess charge of the trap couples to a local lattice deformation. By using nonperturbative techniques, we derive an effective low-energy action for the system. The behavior of the system is characterized by simultaneous polaron tunneling (corresponding to the charging and discharging of the trap) and Kondo screening of the trap spin in the singly occupied state. Hence, the obtained state of the system is a hybrid between the Kondo regime, typically associated with single electron occupancy, and the mixed valence regime, associated with large charge fluctuations. In the presence of a strong magnetic field, we demonstrate that the system is equivalent to a two-level system coupled to an Ohmic bath, with a bias controlled by the applied magnetic field. Due to the Kondo screening, the effect of the magnetic field is significantly suppressed in the singly occupied state. We claim that this suppression can be responsible for the experimentally observed anomalous magnetic field dependence of the average trap occupancy in Si-Si0/sub 2/ FETs.  相似文献   

9.
Sheng  Haohao  Long  Haoxiang  Zou  Guanzhen  Bai  Dongmei  Zhang  Junting  Wang  Jianli 《Journal of Materials Science》2021,56(28):15844-15858
Journal of Materials Science - The room-temperature intrinsic ferromagnetism of monolayer VSe2 with a van der Waals gap provides an exciting opportunity for both the fundamental studies and future...  相似文献   

10.
Monodisperse Ag@SiO2 core-shell structured nanoparticles were firstly utilized as a novel corrosion inhibitor for marine anticorrosion applications. The related marine anticorrosion properties were evaluated with an electrochemical noise (ECN) analysis during 2 weeks of accelerated immersion tests in natural seawater with the addition of various inorganic salts and nutriments. The experimental results indicate that the corrosion activity is markedly reduced by nearly 1-3 orders of magnitude owing to the introduction of Ag@SiO2 core-shell nanoparticles into coating. The inhibition efficiency of corrosion can reach as high as about 99%. More importantly, such a coating exhibits an excellent long-term sustained marine anticorrosion effect. So it could be reasonably inferred that silver cores as active inhibitors effectively prevent the corrosion damage from microorganisms, while silica shells act as a good protection for silver nanoparticles, delay the release of silver ions, and also function as the corrosion inhibiting action for inorganic salts. Therefore, this would make monodisperse Ag@SiO2 core-shell nanoparticles a potential and promising corrosion inhibitor for developing future advanced multifunctional coatings.  相似文献   

11.
While metal nanoparticles(NPs)have shown great promising applications as heterogeneous catalysts,their agglomeration caused by thermodynamic instability is detrimental to the catalytic performance.To tackle this hurdle,we successfully prepared a functional and stable porphyrinic metal-organic framework(MOF),PCN-224-RT,as a host for encapsulating metal nanoparticles by direct stirring at room temperature.As a result,Pt@PCN-224-RT composites with well-dispersed Pt NPs can be constructed by introducing pre-synthesized Pt NPs into the precursor solution of PCN-224-RT.Of note,the rapid and simple stirring method in this work is more in line with the requirements of environmental friendly and industrialization compared with traditional solvothermal methods.  相似文献   

12.
Flower-shaped core-shell Pt@TiO2 nanoparticles have been synthesized successfully by a simple hydrothermal route using TiF4 as precursor. Morphology of the product was investigated by transmission electron microscopy (TEM), selected area electron diffraction (SAED) and X-ray diffraction technique. It has been revealed that the TiO2 shells of core-shell Pt@TiO2 nanoparticles are constructed by multiple wedge-shaped petals of TiO2 crystals with anatase-type crystalline phase. The SAED pattern of TiO2 shells reflecting the formation of wedge-shaped TiO2 petals is because of the preferential growth of (004) crystal planes surrounded by (101) facets of TiO2 crystal planes. The high phototocatalytic performance of flower-shaped core-shell Pt@TiO2 nanoparticles is also largely attributed to the high Schottky energical barrier within Pt-TiO2 hetero-interface and the interaction between synchronously vibrated electrons within Pt and electrons in valence band of TiO2 crystals.  相似文献   

13.
采用简单的溶胶-沉淀法制备了具有核壳结构的纳米CaCO3@SiO2复合产物。用X-射线衍射、电子扫描显微镜、X-射线能谱以及耐酸性测试等方法对粒子的包覆效果、化学组成等做了分析和表征。结果表明,用硬脂酸改性后的碳酸钙比较容易包覆无机的SiO2,SiO2在CaCO3表面包覆后形成了CaCO3为核,SiO2为壳的核壳结构。  相似文献   

14.
The beta-cyclodextrin-modified Ag-TiO2 core-shell nanoparticles were prepared by sodium borohydrate reduction of AgNO3 and the subsequent hydrolysis of the tetraisopropyl orthotitanate in an aqueous medium. Inversely in the preparation of beta-cyclodextrin-modified TiO2-Ag core-shell nanoparticles, first hydrolysis and then following reduction were carried out. The synthesized spherical core-shell nanoparticles were highly water-dispersible and had an average diameter in the range of 9 to 12 nm. A significant shifting of surface plasmon band was observed for the synthesized Ag-TiO2 and TiO2-Ag core-shell nanoparticles. On a model reaction, namely, the photodegradation of phenol by the UV light irradiation, the photocatalytic property of TiO2 nanoparticles was enhanced, when the Ag nanoparticle was embedded in the core of TiO2 nanoparticles but TiO2 nanoparticles coated by Ag shell decreased the photocatalytic property of TiO2 nanoparticles. The mechanism is ascribed to the surface plasmon characteristics of Ag in the core of the TiO2 nanoparticles under the acceleration by host-guest inclusion characteristics.  相似文献   

15.
To realize the great potential of nanoparticles as new materials for biomedical applications, the nanoparticles will have to be assembled in such a way that the newly created assembly will have unique properties that conventional materials do not possess. This will enable nanomaterials to be used for many novel applications. We have attempted to assemble silica nanoparticles to create a two-dimensional nanomaterial, which might be useful for biosensor and biochip production. The silica nanoparticles are synthesized and assembled in a monolayer fashion through the use of halogenated silanes. Photolithography techniques are used to pattern the glass surface prior to nanoparticle attachment. The concentration of the silica nanoparticles in the solution controls the surface coverage of nanoparticles on the glass surface. Different patterned silica arrays can be made with controlled surface coverage. The nanoparticle-covered surface is successfully tested for surface-enhanced enzymatic reactivity for the detection of a neurotransmitter, glutamate. This report demonstrates the feasibility of assembling nanoparticles for biosensor development.  相似文献   

16.
A template-based heat-treatment method has been developed to convert metal nanowire arrays into arrays of metal-metal oxide core-shell nanowires and single-crystalline metal oxide nanotubes. This process is demonstrated by kinetically controlling the conversion of single-crystalline Bi nanowires to Bi-Bi(2)O(3) core-shell nanowires via a multistep, slow oxidation method, and then controlling their further conversion to a single-crystalline Bi(2)O(3) nanotube array via fast oxidation. This process can conveniently be extended to fabricate a free-standing, easily oxidized metal-metal oxide nanowire and metal oxide nanotube array, which may have future applications in nanoscale optics, electronics, and magnetics.  相似文献   

17.
Coulomb blockade has been widely reported in silicon and metallic structures without intentional tunnel barriers. In particular, a simple constriction in silicon-on-insulator (SOI) allows to build a three-terminal silicon single-electron transistor (SET) operating at moderate temperature. The key parameters are the access resistances confining the electrons and the size of the gate-channel overlap, which sets the Coulomb energy. Thin films of doped silicon with sheet resistance of a few tens of h/e/sup 2/ are well suited for fabricating optimized access resistances. Low doped extensions with typical resistivity 1000 /spl Omega//spl mu/m (at 300 K) are also good candidates. We illustrate this MOS-SET principle in SOI constriction and standard MOSFET of similar size. Although relying on different concepts, the ultimate MOSFET and MOS-SET are shown to be technologically close, differing mostly by the ratio between the channel resistance over the access resistance. Because this ratio is decreasing as the gate length shrinks, single electron effects should become more and more important at high temperature in the subthreshold regime of standard field effect transistor devices.  相似文献   

18.
Wang  Jinwen  Deng  Wei  Wang  Wei  Jia  Ruofei  Xu  Xiuzhen  Xiao  Yanling  Zhang  Xiujuan  Jie  Jiansheng  Zhang  Xiaohong 《Nano Research》2019,12(11):2796-2801
Nano Research - Growth of two-dimensional (2D) organic single crystals (2DOSCs) on water surface has attracted increasing attention, because it can serve as a molecularly flat and defect-free...  相似文献   

19.
杨柳  安静  何峻  袁泽明  赵栋梁 《功能材料》2015,(8):8067-8071
利用化学共沉淀法合成Co Fe2O4纳米颗粒,并在氢气气氛下还原获得Co Fe2O4@Fe Co核壳结构磁性纳米颗粒。用XRD和TEM对所得样品进行结构分析,用SQUID测量样品在300 K时的磁滞回线,发现随着壳厚度的增加,核壳结构样品的矫顽力呈现先增加后减小的趋势,而其饱和磁化强度表现出逐渐增加的趋势。为了探究所制备样品的核壳磁性层之间的交换相互作用,还测量了M-T曲线以及T=5 K时的零磁场冷却(ZFC)和带磁场冷却(FC)磁滞回线。  相似文献   

20.
Most of the world's hydrogen supply is currently obtained by reforming hydrocarbons. 'Reformate' hydrogen contains significant quantities of CO that poison current hydrogen fuel-cell devices. Catalysts are needed to remove CO from hydrogen through selective oxidation. Here, we report first-principles-guided synthesis of a nanoparticle catalyst comprising a Ru core covered with an approximately 1-2-monolayer-thick shell of Pt atoms. The distinct catalytic properties of these well-characterized core-shell nanoparticles were demonstrated for preferential CO oxidation in hydrogen feeds and subsequent hydrogen light-off. For H2 streams containing 1,000 p.p.m. CO, H2 light-off is complete by 30 (composite function)C, which is significantly better than for traditional PtRu nano-alloys (85 (composite function)C), monometallic mixtures of nanoparticles (93 (composite function)C) and pure Pt particles (170 ( composite function)C). Density functional theory studies suggest that the enhanced catalytic activity for the core-shell nanoparticle originates from a combination of an increased availability of CO-free Pt surface sites on the Ru@Pt nanoparticles and a hydrogen-mediated low-temperature CO oxidation process that is clearly distinct from the traditional bifunctional CO oxidation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号