首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
摩擦材料的性能是影响机械设备工作可靠性的重要因素,研究摩擦材料对改善制动系统的制动效能具有重要意义。从制动摩擦材料的分类与制备、摩擦磨损性能与机理以及性能预测三个方面,对制动摩擦材料的研究与发展现状进行了调研。首先,介绍了制动摩擦材料包括金属基、半金属基、非金属基三种类型,阐述了各种摩擦材料常用的制备方法及应用领域;其次,分析了制动压力、制动速度等工况对摩擦磨损性能的影响规律及其作用原理,简述了常见的磨损形式,并结合无石棉闸瓦的SEM微观形貌,重点探讨了粘着磨损、磨粒磨损、切削磨损、疲劳磨损与热磨损各自的产生机理及其主要影响因素。此外,归纳了摩擦材料性能的预测与分析方法,并以BP神经网络为例介绍了人工智能技术在摩擦学性能预测中的应用。最后,指出了陶瓷摩擦材料与功能性摩擦材料是未来摩擦材料的发展方向。  相似文献   

2.
综述了C/C-SiC摩擦材料的研究现状,以及C/C-SiC摩擦材料的发展历程。详细分析C/C-SiC摩擦材料的摩擦磨损性能影响因素及机理,介绍了C/C-SiC摩擦材料的改性及应用现状,并对未来的研究重点进行了展望。  相似文献   

3.
不同成分对C/C-SiC材料摩擦磨损行为的影响与机理   总被引:8,自引:2,他引:8  
采用温压-原位反应法制备C/C-SiC复合材料,研究了SiC、石墨和树脂炭成分对C/C-SiC材料摩擦磨损行为的影响及其机理.结果表明:SiC在摩擦表面摩擦膜的形成过程中起骨架作用,提高SiC的含量有利于提高摩擦系数,降低磨损率;树脂炭在材料中具有粘结各成分和提高摩擦系数的作用,但其成膜性较差,易增大磨损率;石墨粉在制动过程中起润滑作用,适量石墨粉有助于形成稳定的摩擦膜降低磨损率;摩擦表面摩擦膜的形成有利于减少C/C-SiC材料的磨损率.  相似文献   

4.
采用温压?原位反应法制备C/C-SiC复合材料,利用QDM150型摩擦试验机研究短炭纤维(SCF)长度和纤维体积分数对C/C-SiC制动材料摩擦磨损性能的影响。结果表明:C/C-SiC制动材料能够保持较高且稳定的摩擦因数;SCF的体积分数将影响C/C-SiC制动材料的摩擦磨损性能,纤维体积分数为10%时,材料具有适中的摩擦因数和较低的磨损率;SCF长度对C/C-SiC制动材料的摩擦磨损性能有显著影响,炭纤维长度为12 mm时,材料具有最佳的摩擦磨损性能。  相似文献   

5.
以不同孔隙率的C/C复合材料为预制体,以甲基三氯硅烷(CH3SiCl3)为反应源气,以氩气为载气,高纯氢气为稀释气体,用化学气相渗透法(CVI)制备一系列C/C-SiC复合材料.通过在MM-2000摩擦磨损实验机上的摩擦试验,对该系列材料的摩擦磨损性能进行了研究,详细分析了不同压力和摩擦环境(湿态和干态)对材料摩擦性能的影响.结果表明,在外界条件相同的情况下,随着压力的增大,材料的摩擦系数先增大后降低;随着SiC含量增加,材料摩擦磨损性能先增强后下降,SiC含量在40%左右具有最好的摩擦磨损性能.在湿态环境下材料的平均动摩擦性能明显衰退,但是当压力增大时这种衰退的影响减小.  相似文献   

6.
以短切炭纤维、石墨粉、硅粉、树脂为原料,采用新开发的温压-熔融渗硅(WC-RMI)法制备C/C-SiC摩擦材料,对不同制动速度下材料的摩擦磨损性能进行研究,并对温压-熔融渗硅法的制备工艺过程进行理论分析。结果表明:C/C-SiC材料的密度可达1.78g/cm3,残留单质Si的含量为0.3%,摩擦因数为0.36~0.43,体积磨损量低至0.6×10-2cm3/MJ,且随着制动速度的增大,其磨损量迅速下降并趋于平稳;C/C-SiC材料在摩擦过程中能够形成光亮、平整、连续的摩擦膜,有效降低C/C-SiC材料的磨损量。  相似文献   

7.
以不同孔隙率的C/C复合材料为预制体,以甲基三氯硅烷(CH3SiCl3)为反应源气,以氩气为载气,高纯氢气为稀释气体,用化学气相渗透法(CVI)制备一系列C/C—SiC复合材料。通过在MM-2000摩擦磨损实验机上的摩擦试验,对该系列材料的摩擦磨损性能进行了研究,详细分析了不同压力和摩擦环境(湿态和干态)对材料摩擦性能的影响。结果表明,在外界条件相同的情况下,随着压力的增大,材料的摩擦系数先增大后降低;随着SiC含量增加,材料摩擦磨损性能先增强后下降,SiC含量在40%左右具有最好的摩擦磨损性能。在湿态环境下材料的平均动摩擦性能明显衰退,但是当压力增大时这种衰退的影响减小。  相似文献   

8.
通过真空热压烧结和冷压烧结两种方法制备Al2O3-TiC/Al2O3-TiC-CaF2叠层陶瓷材料,测量材料试样的体积密度、显微硬度和抗弯强度,研究两种叠层陶瓷材料的摩擦磨损性能。在环盘式摩擦磨损试验机上进行摩擦磨损实验,用扫描电镜(SEM)观察材料磨损前后的微观形貌,分析其磨损机理。结果表明:热压烧结法制备的叠层陶瓷材料具有较高的硬度和抗弯强度,结构致密;在载荷小,低实验转速的情况下,冷压烧结法制备的叠层陶瓷试样具有较小的摩擦系数;在载荷大、高实验转速的条件下,热压烧结法制备的叠层陶瓷材料试样摩擦系数小,磨损率较低,摩擦磨损性能好;热压烧结法制备叠层陶瓷材料磨损机制主要是磨粒磨损和粘着磨损;冷压烧结法制备叠层陶瓷材料的磨损形式主要是表面疲劳磨损和磨粒磨损。  相似文献   

9.
陶瓷模具材料的研究与应用   总被引:1,自引:0,他引:1  
综述了在拉拔、挤压、冲裁、等温锻造等各类模具中应用的陶瓷材料,如金属陶瓷、ZTA、TZP、TZP/Al2O3、TZP/TiC/Al2O3、PSZ、Si3N4、Sialon等的组分、制备工艺和力学性能等方面的研究现状,探讨了陶瓷模具材料研究与应用中存在的问题,展望了陶瓷模具材料的应用前景,提出陶瓷模具材料的增韧补强,尤其是纳米复合和梯度功能复合、模具结构的优化设计和模具材料的表面陶瓷化改性技术以及陶瓷模具可靠性研究等将是提高陶瓷模具力学性能和使用性能的有效措施.  相似文献   

10.
结构类似的炭材料和C/C复合材料的滑动摩擦磨损行为   总被引:1,自引:1,他引:0  
制备粗糙层热解炭(RL)和光滑层热解炭(SL)基体的C/C复合材料,测试该C/C复合材料与40Cr钢配副时的摩擦磨损行为,并对磨损表面进行SEM观察.对比研究高强石墨和光滑层结构的块状热解炭在相同条件下的滑动摩擦磨损行为.结果表明:PAN炭纤维改善C/C复合材料的摩擦磨损行为;在实验载荷范围内,与高强度石墨材料相比,含RL炭C/C复合材料的摩擦因数降低0.08~0.12;体积磨损量增幅降低;与热解炭试样相比,具有SL炭C/C复合材料的摩擦因数降低0.02~0.05,体积磨损量低0.2 mm~3左右;随着时间的延长,大部分C/C复合材料的摩擦因数基本相对稳定或呈小幅下降,而石墨、热解炭块的摩擦因数均呈不同幅度的上升;具有RL炭的C/C复合材料摩擦表面膜厚度随载荷增加而降低,具有SL炭的C/C复合材料摩擦表面较粗糙;高强石墨能形成较完整致密的摩擦膜,但磨粒磨损严重,磨屑易在摩擦膜边缘形成层状堆积;热解炭块摩擦表面磨屑堆积松散,有较多的孔洞以及热解炭层整体剥落的形貌.  相似文献   

11.
C/C-SiC braking composites, based on reinforcement of carbon fibers and matrices of carbon and silicon carbide, were fabricated by warm compaction and in situ reaction process. The tribological characteristics of C/C-SiC braking composites under dry and wet conditions were investigated by means of MM-1000 type of friction testing machine. The influence of dry and wet conditions on the tribological characteristics of the C/C-SiC composites was ascertained. Under dry condition, C/C-SiC braking composites show superior tribological characteristics, including high coefficient of friction (0.38), good abrasive resistance (thickness loss is 1.10 μm per cycle) and steady breaking. The main wear mechanism is plastic deformation and abrasion caused by plough. Under wet condition, frictional films form on the worn surface. The coefficient of friction (0.35) could maintain mostly, and the thickness loss (0.70 μm per cycle) reduces to a certain extent. Furthermore, braking curves are steady and adhesion and oxidation are the main wear mechanisms.  相似文献   

12.
The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC composites during braking were fully coupled and simulated with ANSYS software. The results of tribological tests indicated that the C/C-SiC composites showed excellent static friction coefficient (0.68) and dynamic friction coefficient (average value of 0.36). The highest temperature on friction surface was 445 °C. The simulated temperature field showed that the highest temperature which appeared on the friction surface during braking was about 463 °C. Analysis regarding thermal-stress field showed that the highest thermal-stress on friction surface was 11.5 MPa. The temperature and thermal-stress distributions on friction surface during braking showed the same tendency.  相似文献   

13.
C/C-SiC材料的快速制备及显微结构研究   总被引:3,自引:1,他引:3  
分别以碳毡和二维碳纤维为预制体,采用化学液相气化渗入法结合熔融渗硅反应法快速制备了C/C-SiC陶瓷复合材料。对这种材料的密度和气孔率进行了表征,并通过XRD,OM和SEM等方法对其相组成、显微结构和反应机理进行了研究。结果表明:不同预制体制备的C/C—SiC材料密度和气孔率分别为~2.0g/cm^3和~1.0%。其相组成包括反应生成β-SiC以及未反应的游离Si和C。C/C—SiC中纤维被环状的沉积碳包裹,生成SiC的反应只发生在Si与沉积碳之间,纤维没有损伤。Si,C和SiC各相分布和含量因预制体的不同而有明显差异。  相似文献   

14.
C/C坯体对RMI C/C—SiC复合材料组织的影响   总被引:4,自引:2,他引:4  
以PAN基炭纤维(Cf)针刺整体毡为预制体,用化学气相渗透(CVI)、浸渍炭化(IC)方法制备了不同炭纤维增强炭基体的多孔C/C坯体,采用反应熔渗(RMI)法制备C/C—SiC复合材料,研究了渗Si前后坯体的密度和组织结构。结果表明:不同C/C坯体反应溶渗硅后复合材料的物相组成为SiC相、C相及单质Si相;密度低的坯体熔融渗硅后密度增加较多;密度的增加与开口孔隙度并不是单调增加的关系,IC处理的坯体开口孔隙度低,但渗硅后复合材料的密度增加较多;IC坯体中分布分散的树脂C易与熔渗Si反应,CVI坯体中的热解C仅表层与熔渗Si反应,在Cf和SiC之间有热解C存在;坯体密度相同时,IC处理的坯体中SiC量较多,单质Si相含量少且分散较好,而CVI坯体中SiC量较少,单质Si相的量较多;制备方法相同时,高密度的C/C坯体,渗硅后C相较多。  相似文献   

15.
C纤维增强C和SiC双基复合材料(C/C-SiC)的连接是其能否得到广泛应用的关键技术之一。采用硼改性酚醛树脂以及B4C和SiO2填料通过反应成形连接工艺连接C/C-SiC,研究热处理温度(300~1000℃)对连接件强度保留率的影响。结果表明,随着热处理温度的升高,强度保留率先降低,在800℃时达到最低值80.6%,然后随着温度进一步升高,强度保留率又升高,在1000℃时达到88.1%,表明连接件具有较好的耐热性能。随着热处理温度的升高,连接层相组成发生变化。连接件经过1000℃处理30min后,连接层由B4C、SiO2和玻璃碳以及无定型B2O3组成,C、Si、O和B元素分布都较为均匀,并在界面处发生了扩散,连接件断裂方式为混合断裂。  相似文献   

16.
以无纬布/网胎0°/90°叠层穿刺预制体为增强体,采用化学气相渗(Chemical vapor infiltration,CVI)、树脂浸渍碳化(Polymer infiltration carbonization,PIC)与反应熔渗(Reactive melt infiltration,RMI)复合工艺制备穿刺C/C-SiC复合材料,研究其微观组织及在C2H2-O2焰中的烧蚀行为。结果表明:无纬布、穿刺纤维束由CVI+PIC制备的碳基体填充而形成致密C/C区域,RMI生成的SiC主要位于网胎层中,其含量37.3wt%。复合材料表面因过量硅化而形成了SiC富集层。烧蚀距离20mm、O2:C2H2=2:1时,烧蚀600s后材料X-Y、Z向线烧蚀率分别为:0.8×10-4 mm/s、3.6×10-4 mm/s,比PIP工艺制备C/C-SiC材料烧蚀率小一个数量级。烧蚀面SiC富集层保护及被动氧化作用是材料具有优异抗氧化烧蚀性能的主要原因。随烧蚀距离由20mm向10mm减小,复合材料烧蚀率先缓慢变化后快速增大,烧蚀率快速增长阶段复合材料发生主动氧化烧蚀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号