首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了采空区自燃"三带"研究的必要性,分析了常用的3种划分自燃"三带"指标,确定了试验工作面综合指标各自的指标值。针对试验工作面采用漏风风速和氧气体积分数等综合指标,划分出该试验工作面采空区自燃"三带"范围为18~93 m。采用数值模拟方法,划分出试验工作面采空区氧化带范围为18~93 m。通过现场实测,采用氧气体积分数指标划分出采空区氧化带范围为20~93 m。综合指标确定试验工作面采空区氧化带范围为18~93 m。为研究采空区自燃"三带"的划分提供了一种新方法,建议在类似矿井中使用该方法进行采空区"三带"划分。  相似文献   

2.
为准确判定煤矿采空区自燃"三带"的范围,给工作面防灭火技术措施的制定提供支撑,以俄霍布拉克煤矿5106综放工作面为试验工作面,采用现场测试和数值模拟方法,确定了先划分采空区氧化带边界线后再划分自燃"三带"的思路。确定以氧气浓度6%为指标划分氧化带和窒息带的边界,以及以漏风风速0.24 m/min为指标划分氧化带和散热带的边界,进而划分采空区自燃"三带"。研究结果表明,进风侧采空区散热带<20.5 m,氧化带在20.5~127.6 m,窒息带>127.6 m;回风侧采空区散热带<20.2 m,氧化带在20.2~121.45 m,窒息带>121.45 m。该研究结果为5106工作面防灭火技术措施的制定提供了科学依据。  相似文献   

3.
针对Ⅱ类自燃煤层易发生煤炭自燃的现状,以袁店一矿1023工作面所属10号煤层为研究对象,对1023工作面采空区煤炭的自燃氧化规律进行了研究。通过在采空区埋设抽气管路,测定采空区温度以及O2、CO2浓度等在工作面推进过程中的动态变化并进行分析。结果表明:采空区内CO2浓度分布符合"一源一汇"工作面的采空区漏风流场分布规律,且回风侧比进风侧更早进入窒息带;采空区自燃"三带"的具体分布范围:散热带距工作面中部距离为0~18.8 m,自燃带距工作面中部距离18.8~71.1 m,窒息带距工作面中部距离大于71.1 m,依据划分的自燃"三带"范围计算出该工作面最低适宜回采速度为42 m/月。  相似文献   

4.
针对东辰公司605综放工作面所采6#煤层为特厚的自燃煤层,且煤层埋藏较浅,在采动影响下,工作面与地表存在漏风通道,增大了工作面自然发火的威胁。工作面采用预埋束管取气样分析进行采空区自燃"三带"观测,结果表明:该工作面采空区气体的分布呈立体状态,既存在传统的水平方向的自燃"三带",也存在垂直方向上的自燃"三带";水平方向的氧化带范围分别为进风侧38~170 m,回风侧30~150 m;垂直方向的氧化带范围为运输巷侧煤层底板以上6~52m,回风巷侧煤层底板以上4~46 m。通过测定采空区自燃"三带"的分布范围,可使工作面防灭火工作有的放矢,从而保障工作面安全生产。  相似文献   

5.
通过实际观测采空区浮煤状况、工作面推进速度和采空区进回风侧O2浓度的分布规律,根据"三带"划分方法及划分指标,对白羊岭煤矿15101综放工作面进行了"三带"划分,掌握了采空区煤自燃"三带"分布规律及危险区域。15101工作面散热带的分布范围在采空区距离工作面10~100 m,进风侧由于漏风强度较大,散热带宽度较宽。窒息带在距离工作面165 m以上的采空区深部;在工作面回风侧,窒息带的深度约为137 m。氧化升温带宽度在工作面进风侧最大,达到55 m左右。  相似文献   

6.
为了研究高河煤矿3#煤层W1310工作面采空区在Y型通风(柔膜墙沿空留巷支护)、高抽巷情况下采空区遗煤自燃发火规律、"三带"分布范围,对采空区遗煤自燃做出超前预测。通过在工作面布置束管监测系统,抽取采空区气体并用气相色谱仪化验,分析O_2、CO、CO_2、CH_4、C_2H_2、C_2H_4、C_2H_6等气体浓度变化,综合考虑来划分采空区自燃"三带"范围。最终确定"三带"范围,进风侧:散热带:0~45m;氧化升温带:45~135m;窒息带:大于135m。回风侧:散热带:0~20m;氧化升温带:20~43m;窒息带:大于43m。月推进速度大于70. 8m/月。实践表明,与工作面实际情况非常符合,防止了采空区自燃,为W1310工作面防灭火提供了有效的技术指导。  相似文献   

7.
为更好地掌握相邻煤层开采过程中特厚煤层综放工作面不同漏风源位置对自燃"三带"分布的影响。根据工作面实际情况,建立了不同漏风源位置的采场物理模型,并且利用UDF编译了采空区O_2衰减源项及遗煤区、垮落带和断裂带的孔隙率和渗透率。以此为基础,借助数值模拟方法对漏风源位于(30,-80,47)、(30、0、47)、(30、80、47)3处的自燃"三带"分布进行了分析。结果表明:漏风源位于进风侧采空区时,窒息带面积最小;漏风源位于采空区中部时,散热带面积最小;实际应预防浮煤层自燃带范围为进风侧24.1~127.2 m,回风侧18.5~84.3 m,采空区中部18.5~84.3 m。  相似文献   

8.
采空区氧化自燃带宽度与工作面推进速度关系的数值模拟   总被引:1,自引:1,他引:0  
基于采空区渗流方程和多孔介质动量方程,应用FLUENT软件模拟了采空区漏风风速变化情况,结合采空区自燃"三带"划分标准,得出采空区氧化自燃带宽度与工作面推进速度的关系:随着工作面推进速度提高,进风侧、回风侧、工作面中部氧化自燃带与工作面距离都将增大;工作面中部氧化自燃带与工作面距离增幅较大,进风侧、回风侧氧化自燃带与工作面距离增幅较小。  相似文献   

9.
通过埋管方法对金源煤矿1361工作面采空区CO浓度、O2浓度以及温度分布特征进行了测定,确定了1361工作面采空区自燃"三带"的分布范围:进风顺槽附近氧化带在采空区后10.2~26m,回风顺槽附近氧化带在采空区后40.8~13.3m,采空区中部氧化带在3.7m~10.5m范围内.自燃"三带"的划分为合理选择预防采空区煤炭自燃的措施提供了科学的理论依据,同时积累了划分采空区自燃"三带"的实践经验,为金源煤矿1361工作面及其他工作面的安全生产奠定了基础.  相似文献   

10.
王家福 《煤炭与化工》2021,44(11):95-98
为防止正益煤业11-104工作面采空区出现遗煤自燃现象,采用Fluent数值模拟软件进行工作面初采和正常回采期间自燃三带分布规律的分析,基于分析结果得出氧化自燃带的范围分别为:初采期间采空区进风侧和回风侧距工作面140~360 m和60~237 m,正常回采期间采空区进风侧和回风侧距工作面160~410 m和90~ 235m.基于采空区特征及自燃"三带"分布规律,设计防灭火方案为采空区密闭+埋管注浆+采空区注氮,并在防灭火方案实施后进行束管监测.结果 表明,防灭火方案实施后,采空区内CO最大浓度低于80 ppm,无自燃现象出现,保障了工作面的安全回采.  相似文献   

11.
为了掌握梁宝寺二号井35002综放工作面自然发火的实际情况,通过现场实测O_2浓度和温度随工作面推进距离变化情况,研究35002综放工作面自燃"三带"的分布规律,确定了综放工作面采空区自然发火"三带"的范围:0~34 m为散热带,34~92 m为氧化升温带,92~118 m为窒息带。经计算得出35002综放工作面采空区的自燃防治的安全推进速度为74.5 m/月,并针对不同开采时期提出防治采空区遗煤自燃的措施。  相似文献   

12.
为研究综采工作面采空区煤自燃“三带”分布范围,以大梁湾煤矿30103综采工作面为研究对象,通过现场布置束管、人工监测的方式收集采空区不同深度气体组分数据。采用数值模拟软件进一步分析采空区的氧气浓度,与现场实测数据相互辅证,确定30103综采工作面采空区自燃“三带”的分布范围为散热带(进风侧<104 m,回风侧<43 m)、氧化升温带(进风侧104~310 m,回风侧43~235 m)、窒息带(进风侧> 310 m,回风侧> 235 m)。结合煤层最短自然发火期,得到工作面安全推进速度为4.84 m/d,研究成果对该工作面采空区煤自燃预防具有一定指导意义。  相似文献   

13.
为了有效防治采空区遗煤自燃,以豹子沟煤矿10101综放工作面为研究对象,通过束管监测系统,连续测定采空区内O_2体积分数及温度的变化规律,基于采空区自燃"三带"的划分指标,确定了各测点"三带"范围。综合现场束管监测结果,将"三带"结果取平均值可得试验工作面采空区的"三带"范围分别为:散热带为0~27.8 m,可能自燃带为27.8~74.5 m,窒息带为74.5 m。基于"三带"的判定结果,得到工作面回采速率必须1.84 m/d,否则容易导致采空区自燃事故。  相似文献   

14.
煤矿火灾事故多由于采空区遗煤自燃引起,而“三带”之中的氧化带是自燃现象发生频率最高的区域。为掌握综采放顶煤工作面采空区自燃“三带”分布规律,以四棵树煤炭有限责任公司七号平硐+1 405 m西翼工作面为研究对象,通过现场实测工作面遗煤自燃因素,研究分析了A5煤层采空区自燃“三带”分布规律,并进行总结分析,合理确定了该工作面进风侧、回风侧采空区自燃“三带”的范围。  相似文献   

15.
仲照海  尚文杰 《陕西煤炭》2023,(4):79-84+94
为研究不同配风量影响下110工法沿空留巷采空区煤自燃“三带”分布范围,通过采空区束管监测与Fluent数值模拟,确定双龙煤矿202综采工作面采空区的漏风范围和氧气浓度分布。分析结果表明,随着配风量的增加,运输顺槽和辅运顺槽侧的煤自燃风险区域宽度均增加,氧化带面积逐渐增大。202综采工作面的极限推进速度为2.83 m/d,且随着配风量的增大,工作面安全推进速度逐渐增大。实际工况下202综采工作面采空区自燃“三带”范围为散热带(运输顺槽<90 m,辅运顺槽<96 m)、氧化带(运输顺槽90~226 m,辅运顺槽96~202 m)、窒息带(运输顺槽> 226 m,辅运顺槽> 202 m)。研究成果对工作面采空区煤自燃的预防与防控具有一定的借鉴作用。  相似文献   

16.
张永刚 《煤》2020,29(9)
晋北煤业现阶段回采的5号~上煤层属II类自燃煤层,为保障工作面安全高效生产,通过实验室实验掌握5号~上煤氧化反应产生各类气体浓度的变化规律,并在现场布置束管监测采空区氧气浓度变化,据此划分采空区自燃"三带",分析工作面极限推进速度,结果表明:5号~上煤自燃标志性气体为CO和C_2H_4,采空区氧化自燃带范围为:胶带巷57~156 m,回风巷43~142 m,工作面最小推进速度为2.7 m/d。研究结果对于工作面防灭火具有重要意义。  相似文献   

17.
为提高急倾斜煤层伪斜开采条件下瓦斯与煤自燃综合防治效果,基于煤自燃"三带"划分标准和瓦斯爆炸三角形,建立采空区自燃"三带"分布的数学模型,利用COMSOL Multiphysics5.2模拟软件,对东林煤矿3409工作面采空区孔隙率、气体浓度、温度等参数进行模拟分析。结果表明:采空区上部孔隙率较大,下部除回风巷道边缘处较大外,其他区域孔隙率相对较低;氧气浓度结合漏风速度共同划分氧化带范围为:在进风侧氧化带宽23.2 m,在回风侧宽37.6 m,高温区域主要集中在回风侧、采空区的下部距离工作面较近区域;采空区上部瓦斯浓度相对较低,下部瓦斯浓度相对较高;瓦斯爆炸危险区域为中间工作面支架处区域范围为爆炸危险区域。  相似文献   

18.
张浩浩 《煤》2021,30(4):42-43,68,75
为有效防止97306工作面采空区出现遗煤自燃现象,采用现场实测进行采空区自燃“三带”分布规律分析,基于分析确定采空区进风侧和回风侧氧化自燃带的范围分别为115.63~378.52 m和81.26~325.67 m,结合工作面地质条件和煤层赋存特征,设计采空区防灭火方案为监测监控+汽化阻雾+封闭注氮相结合,并在防灭火方案实施后进行采空区气体的监测分析。结果表明:采空区防灭火方案实施后,采空区内CO和O 2含量均处于正常水平,为工作面的安全回采提供了保障。  相似文献   

19.
为了提高综放工作面的注氮效果,合理确定注氮管路步距及注氮口位置。基于采空区漏风流场及漏风变化规律,采用在采空区预埋束管取样器的方法,检测采空区气体成分随工作面推进变化情况确定采空区自燃"三带"范围,并在同发东周窑煤业公司8102综放工作面得以实践应用。结果表明:该综放工作面冷却带范围为:0~15 m,氧化带范围为:15~95m,窒息带范围为:大于95 m。  相似文献   

20.
《煤炭技术》2015,(8):143-145
基于采空区O2浓度的分布规律,研究了综采工作面采空区自燃"三带"的判定依据,并通过束管监测了采空区一定范围内O2浓度的变化,其浓度变化规律与测点到工作面距离之间具有三次多项式的变化关系。综合现场束管监测结果,将所得"三带"结果取平均值可得试验工作面采空区的"三带"范围分别为:散热带为0~40.8 m,可能自燃带为40.8~218.4 m,窒息带为>218.4 m。基于"三带"的判定结果,得到工作面回采速率必须>1.6 m/d,否则容易导致采空区自燃事故的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号