首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
This paper assesses the anaerobic digestion (AD) of the source-sorted organic fraction of municipal solid waste (SS-OFMSW). For this purpose, an experimental programme was implemented involving the operation and monitoring of two bench-scale anaerobic digesters, continuously fed with SS-OFMSW. The mathematical model (ADM1) was then applied to simulate the process of AD of SS-OFMSW. While start-up of the digesters was relatively slow, re-inoculation with cattle manure with effluent dilution reduced the acclimation period and achieved better stability, accommodating a feeding rate at an OLR = 2.39 kg TVS m(-3) day(-1). The high recorded methane gas production rate, reaching (0.1-2.5 m(3) CH(4)/m(3) reactor day), confirms the excellent biodegradability of the type of waste used (SS-OFMSW) and its suitability for AD. Satisfactory simulations of soluble chemical oxygen demand (COD), pH, and methane composition of biogas were obtained, whereas volatile fatty acid (VFA) concentrations in both reactors were over-predicted albeit capturing its general trend.  相似文献   

2.
Simple logic control algorithms were tested for automatic control of a lab-scale CSTR manure digester. Using an online VFA monitoring system, propionate concentration in the reactor was used as parameter for control of the biogas process. The propionate concentration was kept below a threshold of 10 mM by manipulating the feed flow. Other online parameters such as pH, biogas production, total VFA, and other individual VFA were also measured to examine process performance. The experimental results showed that a simple logic control can successfully prevent the reactor from overload, but with fluctuations of the propionate level due to the nature of control approach. The fluctuation of propionate concentration could be reduced, by adding a lower feed flow limit into the control algorithm to prevent undershooting of propionate response. It was found that use of the biogas production as a main control parameter, rather than propionate can give a more stable process, since propionate was very persistent and only responded very slowly to the decrease of the feed flow which lead to high fluctuation of biogas production. Propionate, however, was still an excellent parameter to indicate process stress under gradual overload and thus recommended as an alarm in the control algorithm.  相似文献   

3.
Upflow anaerobic sludge blanket (UASB) methane fermentation treatment of cow manure that was subjected to screw pressing, thermal treatment and subsequent solid-liquid separation was studied. Conducting batch scale tests at temperatures between 140 and 180 degrees C, the optimal temperature for sludge settling and the color suppression was found to be between 160-170 degrees C. UASB treatment was carried out with a supernatant obtained from the thermal treatment at the optimal conditions (170 degrees C for 30 minutes) and polymer-dosed solid-liquid separation. In the UASB treatment with a COD(Cr) loading of 11.7 kg/m3/d and water temperature of 32.2 degrees C, the COD(Cr) level dropped from 16,360 mg/L in raw water to 3,940 mg/L in treated water (COD(Cr), removal rate of 75.9%), and the methane production rate per COD(Cr) was 0.187 Nm3/kg. Using wastewater thermal-treated at the optimal conditions, also a methane fermentation treatment with a continuously stirred tank reactor (CSTR) was conducted (COD(Cr) in raw water: 38,000 mg/L, hydraulic retention time (HRT): 20 days, 35 degrees C). At the COD(Cr) loading of 1.9 kg/m3/d, the methane production rate per COD(Cr), was 0.153 Nm3/kg. This result shows that UASB treatment using thermal pre-treatment provides a COD(Cr), loading of four times or more and a methane production rate of 1.3 times higher than the CSTR treatment.  相似文献   

4.
In environments where the amount of electron acceptors is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic consortia of acetogenic bacteria and methanogenic archaea. Hydrogen consumption by methanogens is essential for acetogenic bacteria to convert organic acids to acetate and hydrogen. Several syntrophic cocultures growing on propionate and butyrate have been described. These syntrophic fatty acid-degrading consortia are affected by the presence of sulfate. When sulfate is present sulfate-reducing bacteria compete with methanogenic archaea for hydrogen and acetate, and with acetogenic bacteria for propionate and butyrate. Sulfate-reducing bacteria easily outcompete methanogens for hydrogen, but the presence of acetate as carbon source may influence the outcome of the competition. By contrast, acetoclastic methanogens can compete reasonably well with acetate-degrading sulfate reducers. Sulfate-reducing bacteria grow much faster on propionate and butyrate than syntrophic consortia.  相似文献   

5.
Continuous Stirred Tank Reactors (CSTRs), operated in batch mode, were used to evaluate the feasibility of psychrophilic (low temperature) digestion of perennial rye grass in a long term experiment (150 days) for the first time. The reactors were operated in parallel at 3 different temperatures, 10, 15 and 37 degrees C. Hydrolysis, acidification and methanogenesis were assessed by VS degradation, by soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) production, and by methane production, respectively. Hydrolysis was the rate-limiting step at all temperatures and the rates and extent of hydrolysis were considerably lower at 15 and 10 degrees C, than at 37 degrees C. The total VS degradation was 53%, 34% and 19% at 37, 15 and 10 degrees C, respectively. Acidification was not affected by temperature and VFA production and consumption was balanced in all cases, except at 10 degrees C. Methane yields were 0.215 m3 CH4 kg(-1) VS(-1) added, 0.160 m3 CH4 kg(-1) VS(-1) added and 0.125 m3 CH4 kg(-1) VS(-1) added at 37, 15 and 10 degrees C, respectively. Methanogenesis was not strongly affected at 15 C but it became rate-limiting at 10 degrees C. Overall, the solid degradation and methane production performance under psychrophilic conditions was encouraging and greater than previously reported. Considering the non-acclimated, mesophilic nature of the inoculum, there are grounds to believe that low-temperature anaerobic digestion of grass could be feasible if coupled to efficient hydrolysis of the biomass.  相似文献   

6.
In this work the anaerobic monodigestion for the treatment of turkey manure was evaluated, without its codigestion with another substrate. The effect of the organic loading rate (OLR) and the substrate concentration (high total solids (TS) concentration) or product concentration (high volatile fatty acids (VFA) and/or ammonia (NH(3)-N) concentrations) was studied. The results show that for a continuous stirred tank reactor (CSTR) operation, a maximum of 40 g/L of TS and 4.0 g/L of ammonium (NH(4)(+)) was required. In addition, the maximum organic loading rate (OLR) will not exceed 1.5 kg VS/m(3)d. Higher TS and NH(4)(+) concentrations and OLR lead to a reduction on the methane productivity and volatile solids (VS) removal. During the CSTR operation, a high alkalinity concentration (above 10 g/L CaCO(3)) was found; this situation allowed maintaining a constant and appropriate pH (close to 7.8), despite the VFA accumulation. In this sense, the alkalinity ratio (α) is a more appropriate control and monitoring parameter of the reactor operation compared to pH. Additionally, with this parameter a VS removal of 80% with a methane productivity of 0.50 m(3)(CH4)/m(3)(R)d is achieved.  相似文献   

7.
Acidogenic fermentation of thermally hydrolysed waste activated sludge was carried out at laboratory scale in two reactors operated under different hydraulic retention times (HRT). Process performance was assessed in terms of volatile fatty acid (VFA) composition and yield. The diversity of the microbial population was investigated by constructing a 16S rRNA gene library and subsequent phylogenetic analysis of clones. Fluorescence in situ hybridization (FISH) was used to assess the relative abundance of different bacterial groups. Bacteroidetes and Firmicutes were the dominant taxonomic groups representing 93% of the total sequences obtained in the reactor with 4 d HRT. A similar VFA yield (0.4-0.5 g VFA(COD) g SCOD(-1)) was obtained for the HRTs tested (1-4 d), indicating that extended retention times were not useful. Within Firmicutes, Clostridia was the major group detected in the clone sequences. These had close affiliation to Sporanaerobacter acetigenes, suggesting organisms of this group were important for hydrolysis of the protein fraction of the substrate. However, FISH analysis failed to detect the major portion of the bacteria, and this is most likely due to the lack of appropriate probes. This work emphasizes the diversity of fermentative communities, and indicates that more work is needed to identify and detect the important members.  相似文献   

8.
The use of solid mining residues (Cola) which contain a certain amount of Ni, Fe and Co, to stimulate anaerobic processes was evaluated. The effect over methane production and chemical oxygen demand (COD) removal efficiency was analysed. The studies were carried out in discontinuous reactors at lab scale under mesophilic conditions until exhausted. 0, 3, 5 and 7 mg Cola l(-1) doses were applied to synthetic wastewater. Volatile fatty acids (VFA) and sucrose were used as substrate, sulphur and nitrogen concentration, being the noise variable. Cola addition at dose around 5 mg I(-1), turned out to be stimulating for the anaerobic process. It was the factor that most influenced on methane production rate together with VFA and high content of volatile suspended solids. In the case of methane yield, pH was the control factor of strongest influence. Higher values of COD removal efficiency were obtained when the reactors were operated with sucrose at relatively low pH and at the smallest concentration of nitrogen and sulphur. Solid residues dose and the type of substrate were the factors that had most influence on COD removal efficiency.  相似文献   

9.
Food waste can be a valuable carbon source in biological nutrient removal (BNR) systems because of the high C/N and C/P ratio. However, pretreatment is necessary to promote hydrolysis of food waste because of the high concentration of volatile solids associated with organic matter. The influence of the enzymatic pretreatment on acid fermentation of food waste was investigated in this study. Solubilization of particulate matter in food waste was carried out using commercial enzymes. The acidification efficiency and the volatile fatty acid (VFA) production potential of enzymatically pretreated food waste were examined. The highest volatile suspended solid (VSS) reduction was obtained with an enzyme mixture ratio of 1:2:1 for carbohydrase: protease: lipase. An optimum enzyme dosage for solubilization of food waste was 0.1% (V/V) with the enzyme mixture ratio of 1:2:1. In the acid fermentation of enzymatically pretreated food waste, the maximum VFA production and the highest VFA fraction in soluble COD (SCOD) were also achieved at 0.1% (V/N) of total enzyme dosage. Increase in VFA production at this level of enzyme dosage was over 300% compared with the control fermenter. The major form of VFA produced by fermentation was n-butyrate followed by acetate.  相似文献   

10.
The aim of this study is to contribute to the knowledge about anaerobic digestion of 2-chlorophenol (2CP) in an anaerobic sequencing batch reactor (ASBR). Two reactors were set up (ASBR(A) and ASBR(B)). The ASBR(A) was fed with 2-chlorophenol (28-196 mg 2CP-C/L) and no other exogenous electron donor. The ASBR(B) was fed with a mixture of 2CP (28-196 mg 2CP-C/L) and phenol (28-196 mg phenol-C/L) as an electron donor. The process evaluation was conducted by three means: first by substrate consumption efficiency (E(2CP)), second, by biogas yield (Y(biogas-C/2CP-C)) and third, by the specific consumption rates (q(2CP)) as response variables. The 2CP consumption efficiency (90 ± 0.4%) was not influenced by the increase in the concentrations tested. In both reactors ASBR(A) and ASBR(B), both concentration as well as speed increased. Concentration increased from 28 to 114 mg 2CP-C/L. The specific consumption rate (q(2CP)) values were fivefold higher. However, a decrease of 37% was observed at 140 mg 2CP-C/L and one of 72% at 196 mg 2CP-C/L. The biogas yields (0.80 ± 0.06) remained stable in both reactors. In both reactors the biogas yield decreased to 78 ± 3% at 196 mg 2CP-C/L. We might assume this decrease was due to the accumulation of VFA. Finally, poor sludge settleability was determined only in the SBR(B) reactor at 140 and 196 mg 2CP-C/L. An increase was observed in both SVI ≤ 140 ± 5 mL/g and over exopolymeric protein ≤120 mg EP/L.  相似文献   

11.
Microbial fuel cells (MFCs) can convert chemical energy to electricity using microbes as catalysts and a variety of organic wastewaters as substrates. However, electron loss occurs when fermentable substrates are used because fermentation bacteria and methanogens are involved in electron flow from the substrates to electricity. In this study, MFCs using glucose (G-MFC), propionate (P-MFC), butyrate (B-MFC), acetate (A-MFC), and a mix (M-MFC, glucose:propionate:butyrate:acetate = 1:1:1:1) were operated in batch mode. The metabolites and microbial communities were analyzed. The current was the largest electron sink in M-, G-, B-, and A-MFCs; the initial chemical oxygen demands (COD(ini)) involved in current production were 60.1% for M-MFC, 52.7% for G-MFC, 56.1% for B-MFC, and 68.3% for A-MFC. Most of the glucose was converted to propionate (40.6% of COD(ini)) and acetate (21.4% of COD(ini)) through lactate (80.3% of COD(ini)) and butyrate (6.1% of COD(ini)). However, an unknown source (62.0% of COD(ini)) and the current (34.5% of COD(ini)) were the largest and second-largest electron sinks in P-MFC. Methane gas was only detected at levels of more than 10% in G- and M-MFCs, meaning that electrochemically active bacteria (EAB) could out-compete acetoclastic methanogens. The microbial communities were different for fermentable and non-fermentable substrate-fed MFCs. Probably, bacteria related to Lactococcus spp. found in G-MFCs with fermentable substrates would be involved in both fermentation and electricity generation. Acinetobacter-like species, and Rhodobacter-like species detected in all the MFCs would be involved in oxidation of organic compounds and electricity generation.  相似文献   

12.
This work elucidates the effects of pretreatment of secondary sludge by microwave irradiation on anaerobic digestion. The soluble chemical oxygen demand (COD) concentration increased up to 22% as microwave irradiation time increased, which indicated the sludge particles disintegrated. Three identical automated bioreactors with working volume of 5 l were used as anaerobic digesters at mesophilic temperature (35 degrees C). The reactors were separately fed with sludge with microwave pretreated- and control- sludge at different hydraulic retention times (HRT). The volatile solid (VS) reduction in the control operation was approximately 23.2 +/- 1.3%, while it was 25.7 +/- 0.8% for the reactors with the pretreated sludge. The average biogas production rate with the pretreated sludge at 8, 10, 12, and 15 days HRTs was 240 +/- 11, 183 +/- 9, 147 +/- 8, and 117 +/- 7 ml/l/d respectively, while those with the control sludge were 134 +/- 12 and 94 +/- 7 ml/l/d at 10 and 15 days HRTs. Maximum rates of COD removal and methane production with the pretreated sludge were 64% and 79% higher than those of the control system, respectively.  相似文献   

13.
An empirical model for predicting sulfide production in pressure mains (Hvitved-Jacobsen et al., 1988) was evaluated and modified based on results obtained from two intercepting pressure mains located in the Northern part of Jutland, Denmark. Mass balances in pipe influent and effluent were made for volatile fatty acids, VFA (formate, acetate, propionate and butyrate), dissolved COD, DOC and sulfide and biofilm surface rate for sulfide and organic matter were calculated. Relatively high sulfide formation rates were observed at low temperatures (5–12°C). The sulfide production rate strongly depended on wastewater quality in terms of VFA and dissolved carbohydrate concentration. Based on these two sets of observations — wastewater quality and temperature — the original empirical model was modified.  相似文献   

14.
Sustainable operation of an anaerobic sewage sludge digester requires the effective shuttling of carbon from complex organic material to methane gas. The accumulation of intermediates and metabolic products such as volatile fatty acids and hydrogen gas not only reveal inefficiency within the digestion process, but can be detrimental to reactor operation at sufficiently high levels. Eight anaerobic digesters (1 mesophilic and 7 thermophilic) were operated in order to determine the effect of steady-state digestion temperature on the operational stability and performance of the digestion process. Replicate reactors operated at 57.5 degrees C, the highest temperature studied, were prone to accumulation of volatile fatty acids (4052 and 3411 mg/L as acetate) and gaseous hydrogen. Reactors operated at or below 55 degrees C showed no such accumulation of intermediate metabolites. Overall methanogenesis was also greatly reduced at 57.5 degrees C (0.09 L CH4/g VS fed) versus optimal methane formation at 53 degrees C (0.40 L CH4/g VS fed). Microbial community assessment and free energy calculations suggest that the accumulation of fatty acids and hydrogen, and relatively poor methanogenic performance at 57.5 degrees C are likely due to temperature limitations of thermophilic aceticlastic methanogens.  相似文献   

15.
Nitrogen removal from digested manure in a simple one-stage process   总被引:1,自引:0,他引:1  
A process based on partial nitrification and recirculation into the anaerobic digester was studied to remove nitrogen from digested manure and thus reduce enhanced gaseous ammonia emissions due to on-farm biogas production. An anaerobic reactor representing an anaerobic manure digester was fed with a nitrite solution and digested manure liquor. Nitrite was efficiently removed from the influent and ammonium formation was observed first. Ammonium was subsequently eliminated up to a maximum of 90% of the influent concentration, indicating anaerobic ammonium oxidation activity. This activity, however, decreased again and was lost at the end of the 4-month operation period. In a 1.5 L aerobic CSTR that was fed with digested manure liquor, ammonium was efficiently removed from the influent. Nitrite and nitrate formation was observed but mass balances indicated significant N-removal. Accumulation of suspended solids was observed at the end of the experiment suggesting presence of oxygen-free environments. In a second test in a 15 L CSTR where suspended solids sedimentation could be avoided, low N-removal rates were observed in the absence of biofilm carrier elements whereas high N-removal rates were achieved in their presence. A simple one-stage process based on immobilized biomass could therefore be installed downstream of agricultural anaerobic digesters in order to mitigate undesirable gaseous ammonia emissions.  相似文献   

16.
This research has been conducted based on the fact that acetic and butyric acids are favorable substrates for methanogens, and that a low level of propionic acid production during acidogenesis minimizes the inhibition effect on methanogenic growth. Raw swine wastewater was pretreated with ammonia stripping to enhance acidogenesis. The ammonia nitrogen concentration of less than 1.2 g/L did not significantly affect the biochemical acidogenic potential of swine wastewater. For acidogenesis of swine wastewater, a set of experiments were carried out to produce short chain volatile fatty acids (VFA) in laboratory-scale continuously stirred tank reactors. The production of acetic, propionic, and butyric acids associated with simultaneous changes in hydraulic retention time (HRT) and temperature was investigated. Response surface methodology was successfully applied to approximate the responses of the VFA productions. The optimum physiological conditions where the maximum acetic and butyric acids production occurred were 2.4 days HRT at 34 degrees C and 2.1 days HRT at 35 degrees C, respectively. The propionic acid production linearly increased as both HRT and temperature increased.  相似文献   

17.
The preferential utilization of different electron donors and their effects on the nitrate reduction and methanogenesis in a mixed, mesophilic (35 degrees C) methanogenic culture were investigated. Batch methanogenic cultures were fed with dextrin/peptone (D/P), propionate, acetate, and H(2)/CO(2) at an initial COD of 500 mg/L and an initial nitrate concentration of 50 mg N/L. Immediate cessation of methane production was observed in all nitrate-amended cultures. Methane production completely recovered in the D/P- and acetate-fed cultures, and partially recovered or did not recover in the propionate- and H(2)/CO(2)-fed, nitrate-amended cultures, respectively. Accumulation of denitrification intermediates was observed in both the propionate- and H(2)/CO(2)-fed cultures, which resulted in inhibition of fermentation and/or methanogenesis. The fastest and the slowest nitrate reduction were observed in the acetate- and propionate-fed cultures, respectively.  相似文献   

18.
The objective of this study was to evaluate the performances and microbial diversities for development of the effective hyperthermophilic digester system that consists of a hyperthermophilic reactor and hyperthermophilic or thermophilic reactor in series. Lab-scale reactors were operated continuously fed with artificial kitchen garbage. The effect of temperature on the acidification step was firstly investigated. Results indicated that 20.8% of COD solubilization was achieved at 70 degrees C, with 12.6% at 80 degrees C. The average protein solubilization reached 31% at 80 degrees C. Methane conversion efficiency following the acidification was around 85% on average at 55 degrees C, but decreased with increasing temperature and methane gas was not produced over 73 degrees C. As well, bacteria affiliated with the methanogens dominated the population below 65 degrees C, while those affiliated with acidogens were predominant over 73 degrees C. These results indicated that the hyperthermophilic process has considerable benefits to treat wastewater or waste containing high concentration of protein.  相似文献   

19.
Biological ammonium oxidation was carried out in two inverse turbulent bed reactors fed with synthetic mineral wastewater containing a high ammonium concentration (100 mg N-NH4+/L). Both reactors were started-up and operated in the same conditions except for the solid carrier concentration: the solid hold-up ratios applied, defined as the ratios of static to expanded bed height, were 0.1 and 0.3 in reactors R10 and R30 respectively. These two solid hold-up ratios generate different particle-to-particle collision frequencies and, therefore, detachment forces. The influence of solid hold-up on biofilm growth and nitrifying performance was studied from a macroscopic (i.e. nitrate and/or nitrite production) and microbiological point of view. After 60 days of operation, both reactors contained the same amount of biomass. However, R10 produced only nitrate while nitrite accumulated in R30. A comparison of microbial populations in the reactors showed that R10 contained both ammonium and nitrite oxidizing populations such as Nitrosomonas and Nitrospira, whereas in R30, ammonium oxidizing populations were much greater than those of nitrite oxidizers. The major ammonium-oxidizing organism was not the same in both reactors.  相似文献   

20.
This study aimed at evaluating the performance of five laboratory-scale reactors, three UASB and two downflow anaerobic expanded bed (DAEB), fed with saccharose and long chain fatty acids (LCFA) for 410 days. Reactors operated at a temperature of 35 degrees C. The organic load rates were changed between 3.45 and 6.38 kg COD.m3.d(-1). During period I the substrate was saccharose and in periods II, III and IV it was saccharose plus sodium oleate, stereate and a mixture of sodium oleate and stereate. The UASB and DAEB reactors showed a similar performance. In UASB reactors specific methanogenic activity decreased in the periods II, III and IV. COD removal, biogas production and CH4 concentration in biogas decreased in all reactors at the end of the study. A washout occurred in UASB 2 and 3 when sodium stereate exceeded 500 mg.L(-1). In DAEB reactors the main problem was adsorption of LCFA particles onto the solid support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号