首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A study was made of environmental fatigue crack propagation in 2.5 mm thick Ti-6A1-4V sheet conforming to AMS 4911, and 2.2 mm thick IMI 318 conforming to BS TA 10. The environments were dry argon, normal air, distilled water and 3.5 pct aqueous NaCl. There were three alloy/orientation combinations: Ti-6A1-4V L-T, IMI 318 L-T and IMI 318 T-L. Test frequencies were 30 and 50 Hz, at which there was a general trend of higher crack growth rates in the order: argon, air, distilled water, 3.5 pct aqueous NaCl. For both dry argon and 3.5 pct aqueous NaCl there were large differences in crack growth rates at low δK values between the three types of specimen. There was a correlation between the texture and cleavage fracture and crack growth rates in 3.5 pct aqueous NaCl. This result is of considerable practical importance. For dry argon the ranking of specimen types could be explained by the relative importance of mechanical and environmental crack growth, using the structure-sensitive to structure-insensitive transition concept of Irving and Beevers.  相似文献   

3.
A study was made of environmental fatigue crack propagation in 2.5 mm thick Ti-6A1-4V sheet conforming to AMS 4911, and 2.2 mm thick IMI 318 conforming to BS TA 10. The environments were dry argon, normal air, distilled water and 3.5 pct aqueous NaCl. There were three alloy/orientation combinations: Ti-6A1-4V L-T, IMI 318 L-T and IMI 318 T-L. Test frequencies were 30 and 50 Hz, at which there was a general trend of higher crack growth rates in the order: argon, air, distilled water, 3.5 pct aqueous NaCl. For both dry argon and 3.5 pct aqueous NaCl there were large differences in crack growth rates at low δK values between the three types of specimen. There was a correlation between the texture and cleavage fracture and crack growth rates in 3.5 pct aqueous NaCl. This result is of considerable practical importance. For dry argon the ranking of specimen types could be explained by the relative importance of mechanical and environmental crack growth, using the structure-sensitive to structure-insensitive transition concept of Irving and Beevers.  相似文献   

4.
The effects of environment and cyclic stress intensity factor on crack opening displacement and crack tip strain have been measured, and discontinuous crack growth has been observed directly under high resolution conditions in the Scanning Electron Microscope. This information is used in a crack tip failure model together with cyclic stress-strain, low cycle fatigue, and microstructural characteristics of the material to derive the expected crack growth increment. Agreement with measured striation spacings is reasonable.  相似文献   

5.
Constant load creep tests were conducted with cast Ti-6Al-4 V bars in air and vacuum at 315† and 650†C. Some of the bars were notched in their gauge section and heliarc-welded to simulate a weld repair in a casting. Results indicate that the welding has little influence on the time to rupture of the bars. Fractographic analysis of the bars indicates minor differences in the welded and unwelded fracture surfaces. However, these differences do not affect the microstructural influence on the creep and fracture processes. The prior beta grain, size and the alpha platelet size are shown to control the creep fracture of this alloy. These data show that weld repair of titanium castings for creep applications should be acceptable.  相似文献   

6.
Hydrogen-enhanced fatigue crack growth in Ti-6Al-4V ELI weldments   总被引:1,自引:0,他引:1  
The effects of a hydrogen environment on the fatigue crack growth rates in Ti-6A1-4V ELI (STA) and weld material were determined in the temperature range of ambient to -200°F. The hydrogen environment resulted in an acceleration of the crack growth rate and a change in the fracture mode for both materials in the temperature range of ambient to -100°F. At -200°F, there was no significant difference between the crack growth rates obtained in helium and hydrogen gas. The degree of hydrogén-enhanced crack growth was found to be dependent on the crack tip stress-intensity range, temperature, and microstructure of the material. The data is consistent with an embrittlement mechanism involving hydrogen diffusing ahead of the crack front.  相似文献   

7.
8.
Advanced metallic bone implants are designed to have a porous surface to improve osseointegration and reduce risks of loosening. An alternative approach to existing surface treatments to create a porous surface is to bond separately produced metallic foams onto the implant. To assess the feasibility of this approach, a Ti-6Al-4V foam was diffusion bonded onto bulk Ti-6Al-4V in an argon atmosphere at temperatures between 1173 K and 1223 K (900 °C and 950 °C) for times between 45 and 75 minutes. These specimens were tested in tension to determine bond quality: failures occurred in the foam, indicating a strong diffusion-bonded interface. The quality of the bond was confirmed by metallographic studies, indicating that this approach, which can also be applied to creating of sandwich with porous cores, is successful.  相似文献   

9.
Fracture toughness tests have been carried out on a wide range of specimen orientations from textured Ti-6A1-4V alloy plate. The tests were instrumented to allow measurement of crack extension as well as stress intensity factors and COD data. Preferred orientation of the dominant alpha phase was found to influence not only the toughness parameters but also the fracture surface and propensity to shear lip formation. The anisotropic nature of plasticity in the material was demonstrated by direct measurement of yield loci and by the variable shapes of plastic zones around crack tips. Results are discussed in terms of a qualitative analysis of slip systems at the crack tip and also in a semiquantitative anisotropic upper bound slip line treatment. It is found that stable crack extension starts at low values ofK and COD for specimens in which plastic flow can occur readily at the crack tip but toughness, assessed as resistance to unstable crack propagation, is greatest in these cases. The magnitude of microstructure induced anisotropy is shown to be much smaller than that originating in preferred crystallographic orientation. Troughlike features on some fracture surfaces were found to be associated with regions of particularly strong local texture. Formerly with the Department of Physical Metallurgy, University of Birmingham  相似文献   

10.
11.
12.
Mechanical behaviors at 538 °C, including tensile and creep properties, were investigated for both the Ti-6Al-4V alloy and the Ti-6Al-4V composite reinforced with 10 wt pct TiC particulates fabricated by cold and hot isostatic pressing (CHIP). It was shown that the yield strength (YS) and ultimate tensile strength (UTS) of the composite were greater than those of the matrix alloy at the strain rates ranging from approximately 10−5 to 10−3 s−1. However, the elongation of the composite material was substantially lower than that of the matrix alloy. The creep resistance of the composite was superior to that of the matrix alloy. The data of minimum creep strain rate vs applied stress for the composite can be fit to a power-law equation, and the stress exponent values of 5 and 8 were obtained for applied stress ranges of 103 to 232 MPa and 232 to 379 MPa, respectively. The damage mechanisms were different for the matrix alloy and the composite, as demonstrated by the scanning electron microscopy (SEM) observation of fracture surfaces and the optical microscopy examination of the regions adjacent to the fracture surface. The tensile-tested matrix alloy showed dimpled fracture, while the creep-tested matrix alloy exhibited preferentially interlath and intercolony cracking. The failure of the tensile-tested and creep-tested composite material was controlled by the cleavage failure of the particulates, which was followed by the ductile fracture of the matrix.  相似文献   

13.
Evaluations of the (infrared)-brazed Ti-6Al-4V and niobium joints using three silver-base braze alloys have been extensively studied. According to the dynamic wetting angle measurement results, the niobium substrate cannot be effectively wetted by all three braze alloys. Because the dissolution of Ti-6Al-4V substrate causes transport of Ti into the molten braze, the molten braze dissolved with Ti can effectively wet the niobium substrate during brazing. For infrared-brazed Ti-6Al-4V/Ag/Nb joint, it is mainly comprised of the Ag-rich matrix. The TiAg reaction layer is observed at the interface between the braze and Ti-6Al-4V substrate. In contrast, Ti-rich, Ag-rich, and interfacial TiAg phases are found in the furnace-brazed specimen. The dominated Ti-rich phase in the joint is caused by enhanced dissolution between the molten braze and Ti-6Al-4V substrate. The infrared-brazed Ti-6Al-4V/72Ag-28Cu/Nb joint is mainly comprised of the Ag-rich matrix and Ag-Cu eutectic. With increasing the brazing temperature or time, the amount of Ag-Cu eutectic is decreased, and the interfacial Cu-Ti reaction layer(s) is increased. The infrared brazed joint has the highest average shear strength of 224.1 MPa. The averaged shear strength of the brazed joint is decreased with increasing brazing temperature or time, and its fracture location changes from the braze alloy into the interfacial reaction layer(s) due to excessive growth of the Cu-Ti intermetallics. The infrared-brazed Ti-6Al-4V/95Ag-5Al/Nb joint is composed of Ag-rich matrix and TiAl interfacial reaction layer. With increasing the brazing time, the amount of Ag-rich phase is greatly decreased, and the interfacial reaction layer becomes Ti3Al due to enhanced dissolution of Ti-6Al-4V substrate into the molten braze. The average shear strength of the infrared-brazed joint is 172.8 MPa. Additionally, the existence of an interfacial Ti3Al reaction layer significantly deteriorates the shear strength of the furnace-brazed specimen.  相似文献   

14.
Fatigue crack growth rates have been determined for beta-annealed Ti-6Al-4V alloys with respective oxygen contents of 0.06, 0.11, 0.18 and 0.20 wt pct. For each of these alloys, transitional crack growth behavior has been observed which appears to correlate with a critical value of the reversed plastic zone size,viz the Widmanstätten packet size. Moreover, growth rates below transitional levels order in terms of packet size, with lower growth rates associated with larger packets. The present results suggest that intersti-tial oxygen content and prior beta grain size significantly affect fatigue crack growth rates through control of the Widmanstätten packet size.  相似文献   

15.
Cavitation-induced erosion has been examined in Ti-6A1-4V in the mill annealed, solution-treat and aged, and beta annealed conditions. Weight loss data show only small differences between heat treatments with the solution-treat and aged microstructure exhibiting the lowest weight loss rates. Sequential micrographs of the same specimen area as a function of erosion time show that initial fracture occurs along the α interfaces and along crystallographic slip bands in the α-phase. The early stages of erosion are also dependent on the orientation of the Widmanstatten colonies in the beta annealed condition. These observations strongly suggest that fatigue fracture is important, at least in the early stages of the cavitation erosion process. Depression of the softer α- phase also occurs at short exposure times, and this facilitates fracture and removal of the exposed material;i.e., β-phase or tempered martensite. Examination of the eroded surfaces in the later stages where considerable material has been removed shows little evidence of the underlying microstructure, despite the distinct differences in the micro-structures of the samples tested. Formaly Undergraduate Students at Michigan Technological University  相似文献   

16.
17.
Microstructures, phases, and phase transformations in Ti-6Al-4V alloy specimens containing 0, 10, 20, and 30 at. pct hydrogen were investigated using optical microscopy (OM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and microhardness testing. Alloying with hydrogen was achieved by holding the specimens in a pure hydrogen atmosphere of different pressures at 780 °C for 24 hours. The phases present in the temperature range of 20 °C to 1000 °C were determined by microstructural characterization of the specimens quenched from different temperatures. Increasing the hydrogen addition from 0 to 30 at. pct lowered the beta-transus temperature of the alloy from 1005 °C to 815 °C, significantly slowed down the kinetics of the beta-to-alpha transformation, and led to formation of an orthorhombic martensite instead of the hexagonal martensite found in quenched specimens containing 0 pct H. A hydride phase was detected in specimens containing 20 and 30 at. pct hydrogen. The time-temperature-transformation (TTT) diagrams for beta-phase decomposition were determined at different hydrogen concentrations. The nose temperature for the beginning of the transformation decreased from 725 °C to 580 °C, and the nose time increased from 12 seconds to 42 minutes when the hydrogen concentration was increased from 0 to 30 at. pct.  相似文献   

18.
Ti-6Al-4V samples were plasma nitrided at 520°C in two environments (nitrogen and a mixture of nitrogen and hydrogen in the ratio of 3:1) for two different time periods (4 h and 18 h). Fretting wear tests were conducted on unnitrided and nitrided samples for 50,000 cycles using two counterbody materials (unnitrided Ti-6Al-4V and alumina). Gross slip prevailed at a normal load of 4.9 N while mixed stick-slip prevailed at 9.8 N. Tangential force coefficient values of plasma nitrided samples were lower than those of unnitrided samples. The tangential force coefficient nearly stabilised after thousand cycles in case of samples tested against Ti-6Al-4V counterbody. On the other hand, it showed a continuously increasing trend in case of specimens tested against alumina counterbody. The samples nitrided for 4 h exhibited higher hardness and lower tangential force coefficient compared to the specimens nitrided for 18 h. The samples nitrided in nitrogen-hydrogen mixture environment exhibited higher hardness and lower tangential force coefficient compared to the specimens nitrided in nitrogen. The samples plasma nitrided in nitrogen-hydrogen mixture for 4 h exhibited the highest hardness and the lowest tangential force coefficient. The wear volume of the plasma nitrided samples was lower than that of the unnitrided samples. Owing to tribochemical reactions, the wear volume of unnitrided and nitrided samples fretted against alumina ball was higher than that of the samples fretted against Ti-6Al-4V. A consistent trend was not observed regarding which nitriding condition would result in lower wear volume at different loads.  相似文献   

19.
The internal reactions associated with hydrogen absorbed at ambient temperature by Ti-6A1-4V having a transformedβ microstructure were determined by using X-ray diffraction analysis. Below 650 ppm, the absorbed hydrogen was concentrated primarily in theβ phase causing an increase in the d(200) spacing and considerable X-ray line broadening. The a phase, however, was not significantly affected by the absorbed hydrogen showing no change in the d(1120) and d(1012) spacings and only a finite amount of line broadening. At approximately 650 ppm H, hydride precipitation began at thea-β interface. With increasing hydrogen content, theβ phase d(200) spacing continued to increase, the (200) X-ray line broadening reached a limiting value, and massive hydrides were formed. The data indicates that low concentrations of hydrogen absorbed by a-β titanium alloys can be detected by examining the X-ray line profile of theβ phase. W. D. HANNA, formerly with the McDonnell Douglas Astronautics Co.  相似文献   

20.
The alloy Ti-6-Al-4V deforms superplastically in the temperature range 750 to 950° The most important factor which is responsible for superplastic behavior was found to be the very fine grain size. Strain rate has no direct effect on superplasticity, however when the strain rate is very low (approximately 2 × 10 s), prolonged exposure to high temperature causes grain growth and early failure. The strain rate sensitivity factorm = 0.5 and the apparent activation energyAH = 45,000 cal/mole, which is approximately the same as the activation energy for grain boundary self diffusion of titanium. Both values are independent of strain rate within the range 10 - 2.5 × 10 s. All the experimental points fall in a straight line when plotted as log (εkTd* 2/DgbGb3) vs log (σ/G) with a slopen = l/m = 2. This is in excellent agreement with the theory of grain boundary sliding accommodated by dislocation motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号