首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The type III secretion system of Salmonella typhimurium directs the translocation of proteins into host cells. Evolutionarily related to the flagellar assembly machinery, this system is also present in other pathogenic bacteria, but its organization is unknown. Electron microscopy revealed supramolecular structures spanning the inner and outer membranes of flagellated and nonflagellated strains; such structures were not detected in strains carrying null mutations in components of the type III apparatus. Isolated structures were found to contain at least three proteins of this secretion system. Thus, the type III apparatus of S. typhimurium, and presumably other bacteria, exists as a supramolecular structure in the bacterial envelope.  相似文献   

3.
Pseudomonas aeruginosa is a prolific exporter of virulence factors and contains three of the four protein secretion systems that have been described in gram-negative bacteria. The P. aeruginosa type II general secretory pathway (GSP) is used to export the largest number of proteins from this organism, including lipase, phospholipase C, alkaline phosphatase, exotoxin A, elastase and LasA. Although these exoproteins contain no sequence similarity, they are specifically and efficiently transported by the secretion apparatus. Bacterial homologues of XcpQ (GspD), the only outer membrane component of this system, have been proposed to play the role of gatekeeper, by presumably interacting and recognizing the exported substrates to allow their passage through the outer membrane. While determining the phenotype of nonpolar deletions in each of the xcp genes, we have shown that a deletion of the P. aeruginosa strain K xcpQ does not completely abolish protein secretion. As the proposed function of XcpQ should be requisite for secretion, we searched for additional factors that could carry out this role. A cosmid DNA library from a PAK strain deleted for xcpP-Z was tested for its ability to increase protein secretion by screening for enhanced growth on lipid agar, a medium that selects for the secretion of lipase. In this manner, we have identified an XcpQ homologue, XqhA, that is solely responsible for the residual export observed in a deltaxcpQ strain, although it is not required for efficient secretion in wild-type P. aeruginosa. We have also demonstrated that this protein is capable of recognizing all of the exoproteins of P. aeruginosa, arguing against the proposed role of members of the secretin family as determinants of specificity.  相似文献   

4.
The tailspike protein (TSP) of Salmonella typhimurium P22 bacteriophage is a multifunctional homotrimer, 6 copies of which are non-covalently attached to the capsid to form the virion tail in the last reaction of phage assembly. An antigenic peptide of foot-and-mouth disease virus (FMDV), aa 134-156 of protein VP1, has been joined to the carboxy terminus of TSP, and produced as a fusion protein in Escherichia coli directed by the trp promoter. The resulting fusion protein is soluble, stable, non-toxic, and can be easily purified by standard procedures. Moreover, both the endorhamnosidase and capsid assembly activities of the TSP are conserved, permitting the fusion protein to reconstitute infectious viruses by in vitro association with tailless particles. In both free TSP and P22 chimeric virions, the foreign peptide is solvent-exposed and highly antigenic, indicating that P22 TSP could be an appropriate carrier protein for multimeric peptide display.  相似文献   

5.
The E. coli hemolysin (HlyA) secretion apparatus represents a type I secretion system that is fully functional in Salmonella. The system which consists of the two specific membrane proteins HlyB and HlyD and the outer membrane protein TolC, recognizes on HlyA a C-terminally located signal sequence of about 60 amino acids. Fusion proteins to which this signal sequence is covalently linked at the C-terminus are also recognized by this secretion apparatus. The efficiency of secretion is dependent on the rate of folding of the reporter protein. Secretion-competent regions of a given reporter protein that is not secretable as entire protein can be screened by a recently constructed transposon TnhlyAs which allows the insertion of the secretion signal into any region of the reporter protein. The genetic information for antigens of any source ranging in size between 10 and 1000 amino acids can be easily inserted into a recently constructed secretion vector which will allow the secretion of the fused antigen(s) in attenuated Salmonella typhimurium strains and in other attenuated Enterobacteriaceae. By manipulation of the Hly secretion system the antigen can be either completely secreted into the environment, fixed on the outer membrane or arrested in the cytoplasm of the used carrier strain. By the use of appropriate attenuated Salmonella strains the antigen is delivered in isolated compartments or to the cytosolic compartment. The extracellular delivery of such antigens is also possible with the help of appropriate carrier strains. The immunological consequences of the different display of the processed antigen will be discussed in the paper by Hess et al in this volume. With a similar antigen delivery system the easy identification and molecular characterization of unknown antigens recognized by the immune system in an infection is also feasible.  相似文献   

6.
The filamentous phage f1 and IKe infect a common host, are structurally highly similar and exhibit 55% identity at the DNA sequence level. Based on the idea that proteins that function autonomously will be more tolerant of multiple amino acid differences than proteins that must interact with other proteins to function, the ability of four individual proteins from f1 to substitute for their IKe equivalents to promote virus assembly in vivo has been examined. The reciprocal replacements were also examined. Only the single-strand DNA binding proteins (pV) were fully interchangeable. A minor capsid protein, pIX, was unable to substitute in assembly of the heterologous phage. Two proteins required for particle assembly that are not part of the phage particle, pI and pIV, were not interchangeable, although pIVf1 stimulated formation of a very small number of IKe particles in the absence of pIVIKe. The lack of interchangeability suggests that these morphogenetic proteins do not function autonomously, but rather interact with one or more phage proteins. The ability of certain overproduced proteins to interfere with assembly of wild-type f1 or IKe forms the basis for a model that suggests that phage assembly requires an interaction between pI and pIV.  相似文献   

7.
8.
The 220 kDa Bordetella pertussis filamentous haemagglutinin (FHA) is the major extracellular protein of this organism. It is exported using a signal peptide-dependent pathway, and its secretion depends on one specific outer membrane accessory protein, FhaC. In this work, we have investigated the influence of conformation on the FhaC-mediated secretion of FHA using an 80kDa N-terminal FHA derivative, Fha44. In contrast to many signal peptide-dependent secretory proteins, no soluble periplasmic intermediate of Fha44 could be isolated. In addition, cell-associated Fha44 synthesized in the absence of FhaC did not remain competent for extracellular secretion upon delayed expression of FhaC, indicating that the translocation steps across the cytoplasmic and the outer membrane might be coupled. A chimeric protein, in which the globular B subunit of the cholera toxin, CtxB, was fused at the C-terminus of Fha44, was not secreted in B. pertussis or in Escherichia coli expressing FhaC. The hybrid protein was only secreted when both disulphide bond-forming cysteines of CtxB were replaced by serines or when it was produced in DsbA- E. coli. The Fha44 portion of the secretion-incompetent hybrid protein was partly exposed on the cell surface. These results argue that the Fha44-CtxB hybrid protein transited through the periplasmic space, where disulphide bond formation is specifically catalysed, and that secretion across the outer membrane was initiated. The folded CtxB portion prevented extracellular release of the hybrid, in contrast to the more flexible CtxB domain devoid of cysteines. We propose a secretion model whereby Fha44 transits through the periplasmic space on its way to the cell surface and initiates its translocation through the outer membrane before being released from the cytoplasmic membrane. Coupling of Fha44 translocation across both membranes would delay the acquisition of its folded structure until the protein emerges from the outer membrane. Such a model would be consistent with the extensive intracellular proteolysis of FHA derivatives in B. pertussis.  相似文献   

9.
10.
BACKGROUND: Replication of a plasmid derived from the Escherichia coli phage lambda initiates by binding of the lambda O protein initiator to the origin of lambda DNA replication, ori lambda. The lambda P protein participates in subsequent steps of assembly of the lambda replication complex. A function of lambda P required for replication complex assembly is inactivated at 43 degrees C by the ts1 mutation. RESULTS: We found that the lambda replication complex assembled at 30 degrees C survives the temperature upshift in lambda crotsPts1 plasmid-harbouring bacteria. We present several lines of evidence that in this system (in which the replication complex assembly does not occur), the replication complex assembled prior to the temperature upshift is inherited by one of two daughter plasmid copies at each replication round for more than 30 cell generations. The 'old' replication complex-driven replication is chloramphenicol-resistant and rifampicin-sensitive. This replication is dependent on lambda O and host dnaK, dnaJ and grpE chaperone gene functions. CONCLUSIONS: The lambda O-containing replication complex is inherited together with DNA and bears information how to initiate the next round of replication at ori lambda; thus, we consider that this phenomenon deserves to be called protein inheritance.  相似文献   

11.
S. typhimurium stimulates signaling pathways leading to membrane ruffling, actin cytoskeleton rearrangements, and nuclear responses. The stimulation requires a protein secretion system (type III) that translocates bacterial proteins into the host cell. We show that SopE, a substrate of this secretion system, stimulates cytoskeletal reorganization and JNK activation in a CDC42- and Rac-1-dependent manner. A lambda gt11 cDNA library screen for proteins that interact with SopE identified Rac-1 and CDC42. Furthermore, purified SopE was shown to stimulate GDP/GTP nucleotide exchange in several Rho GTPases in vitro, including Rac-1 and CDC42. These findings establish a paradigm for microbial stimulation of cellular responses in which the pathogen induces signaling events by directly engaging the signaling machinery within the host cell.  相似文献   

12.
Pathogenic Salmonella species initiate infection of a host by inducing their own uptake into intestinal epithelial cells. An invasive phenotype is conferred to this pathogen by a number of proteins that are components of a type III secretion system. During the invasion process, the bacteria utilize this secretion system to release proteins that enter the host cell and apparently interact with unknown host cell components that induce alterations in the actin cytoskeleton. To investigate the role of secreted proteins as direct modulators of invasion, we have evaluated the ability of Salmonella typhimurium to enter mammalian cells that express portions of the Salmonella invasion proteins SipB and SipC. Plasma membrane localization of SipB and SipC was achieved by fusing carboxyl- and amino-terminal portions of each invasion protein to the intracellular carboxyl-terminal tail of a membrane-bound eukaryotic receptor. Expression of receptor chimeras possessing the carboxyl terminus of SipB or the amino terminus of SipC blocked Salmonella invasion, whereas expression of their chimeric counterparts had no effect on invasion. The effect on invasion was specific for Salmonella since the perturbation of uptake was not extended to other invasive bacterial species. These results suggest that Salmonella invasion can be competitively inhibited by preventing the intracellular effects of SipB or SipC. In addition, these experiments provide a model for examining interactions between bacterial invasion proteins and their host cell targets.  相似文献   

13.
14.
Enteropathogenic Escherichia coli uses a type III secretion apparatus to deliver proteins essential for pathogenesis to the host epithelium. Several proteins have been detected in culture supernatants of the prototype EPEC strain E2348/69 and three of these, EspA, EspB, and EspD, use type III machinery for export. Here, we report the identification and characterization of CesD, a protein required for proper EspB and EspD secretion. CesD shows sequence homology to chaperone proteins from other type III secretion pathways. Based on this, we hypothesize that CesD may function as a secretion chaperone in EPEC. A mutation in cesD abolished EspD secretion into culture supernatants and reduced the amount of secreted EspB, but had little effect on the amount of secreted EspA. The mutant strain was negative for both FAS and Tir phosphorylation, consistent with the previously described roles for EspB and EspD in EPEC pathogenesis. CesD was shown to interact with EspD but not EspB or EspA. CesD was detected in the bacterial cytosol, and, surprisingly, a substantial amount of the protein was also found to be associated with the inner membrane. Thus, although CesD has some attributes that are similar to other type III secretion chaperones, its membrane localization separates it from previously described members of this family.  相似文献   

15.
16.
Fimbriae are long filamentous polymeric protein structures located at the surface of bacterial cells. They enable the bacteria to bind to specific receptor structures and thereby to colonise specific surfaces. Fimbriae consist of so-called major and minor subunits, which form, in a specific order, the fimbrial structure. In this review emphasis is put on the genetic organisation, regulation and especially on the biosynthesis of fimbriae of enterotoxigenic Escherichia coli strains, and more in particular on K88 and related fimbriae, with ample reference to well-studied P and type 1 fimbriae. The biosynthesis of these fimbriae requires two specific and unique proteins, a periplasmic chaperone and an outer membrane located molecular usher ('doorkeeper'). Molecular and structural aspects of the secretion of fimbrial subunits across the cytoplasmic membrane, the interaction of these subunits with periplasmic molecular chaperone, their translocation to the inner site of the outer membrane and their interaction with the usher protein, as well as the (ordered) translocation of the subunits across the outer membrane and their assembly into a growing fimbrial structure will be described. A model for K88 fimbriae is presented.  相似文献   

17.
The biogenesis of diverse adhesive structures in a variety of Gram-negative bacterial species is dependent on the chaperone/usher pathway. Very little is known about how the usher protein translocates protein subunits across the outer membrane or how assembly of these adhesive structures occurs. We have discovered several mechanisms by which the usher protein acts to regulate the ordered assembly of type 1 pili, specifically through critical interactions of the chaperone-adhesin complex with the usher. A study of association and dissociation events of chaperone-subunit complexes with the usher in real time using surface plasmon resonance revealed that the chaperone-adhesin complex has the tightest and fastest association with the usher. This suggests that kinetic partitioning of chaperone-adhesin complexes to the usher is a defining factor in tip localization of the adhesin in the pilus. Furthermore, we identified and purified a chaperone-adhesin-usher assembly intermediate that was formed in vivo. Trypsin digestion assays showed that the usher in this complex was in an altered conformation, which was maintained during pilus assembly. The data support a model in which binding of the chaperone-adhesin complex to the usher stabilizes the usher in an assembly-competent conformation and allows initiation of pilus assembly.  相似文献   

18.
The FhuA protein of Escherichia coli K-12 transports ferrichrome and the structurally related antibiotic albomycin across the outer membrane and serves as a receptor for the phages T1, T5, and phi 80 and for colicin M. In this paper, we show that chimeric proteins consisting of the central part of FhuA and the N- and C-terminal parts of FhuE (coprogen receptor) or the N- and/or C-terminal parts of FoxA (ferrioxamine B receptor), function as ferrichrome transport proteins. Although the hybrid proteins contained the previously identified gating loop of FhuA, which is the principal binding site of the phages T5, T1, and phi 80, only the hybrid protein consisting of the N-terminal third of FoxA and the C-terminal two thirds of FhuA conferred weak phage sensitivity to cells. Apparently, the gating loop is essential, but not sufficient for wild-type levels of ferrichrome transport and for phage sensitivity. The properties of FhuA-FoxA hybrids suggest different regions of the two receptors for ferric siderophore uptake.  相似文献   

19.
Enteropathogenic Escherichia coli strains are able to signal host cells, cause dramatic cytoskeletal rearrangements, and adhere intimately to the cell surface in a process known as the attaching and effacing effect. A pathogenicity island of 35 kb known as the locus of enterocyte effacement (LEE) is necessary and sufficient for this effect. The LEE encodes an outer membrane adhesin called intimin, a type III secretion apparatus, and the EspA and EspB secreted proteins. The DNA sequence of the region between espA and espB revealed a new gene, espD. The product of espD was demonstrated by using a T7 expression system. We constructed a nonpolar mutation in espD and found that the mutant is incapable of the signal transduction events that lead to activation of the putative intimin receptor in host cells and that the mutant fails to induce the attaching and effacing effect. These phenotypes were restored to the mutant by complementation with a plasmid containing the cloned espD locus. We demonstrated by immunoblotting and microsequencing that the EspD protein is secreted via the type III apparatus. Thus, we describe a novel locus encoding a secreted protein that is required for attaching and effacing activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号