首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to compare the magnitudes and health impacts of arsenic and other toxic trace elements in well water, groundwater and hair samples were collected from three areas with different arsenic exposure scenarios in the Mekong River basin of Cambodia. Ampil commune in Kampong Cham province was selected as an uncontaminated area, Khsarch Andaet commune in Kratie province was selected as a moderately contaminated area, and Kampong Kong commune in Kandal Province was selected as an extremely contaminated area. Results of ICP-MS analyses of the groundwater samples revealed that As, Mn, Fe and Ba concentrations were significantly different among the three study areas (Kruskal-Wallis test, p < 0.0001). Out of 46 observed wells in the Kandal province study area, 100% detected As > 50 μg L−1 and Fe > 300 μg L−1; 52.17% had Mn > 400 μg L−1 and 73.91% found Ba > 700 μg L−1. In the Kratie province study area (n = 12), 25% of wells showed elevated arsenic levels above 10 μg L−1 and 25% had Mn > 400 μg L−1, whereas samples from Kampong Cham province study area (n = 18) were relatively clean, with As < 10 μg L−1. A health risk assessment model derived from the USEPA was applied to calculate individual risks resulting from drinking groundwater. Computational results indicated that residents from Kandal Province study area (n = 297) confronted significantly higher non-carcinogenic and carcinogenic risks than those in Kratie (n = 89) and Kampong Cham (n = 184) province study areas (Kruskal-Wallis test, p < 0.0001). 98.65% of respondents from the Kandal province study area were at risk for the potential non-cancer effect and an average cancer risk index was found to be 5 in 1000 exposure. The calculations also indicated that, in the Kratie province study area, 13.48% of respondents were affected by non-cancer health risks and 33.71% were threatened by cancer, whereas none of respondents in the Kampong Cham province study area appeared to have non-carcinogenic effect. Positively significant correlations of the arsenic content in scalp hair (Ash) with both arsenic levels in groundwater (Asw) (rs (304) = 0.757, p < 0.0001) and individual average daily doses (ADD) of arsenic (rs (304) = 0.763, p < 0.0001) undoubtedly indicated that arsenic accumulation in the bodies of Cambodia residents in the Mekong River basin was mainly through a groundwater drinking pathway. To the best of our knowledge, this is the first comprehensive report comparing individual health risk assessments of arsenic exposure through a groundwater drinking pathway to enriched arsenic levels from groundwater in the Mekong River basin, Cambodia. This study indicates that elevated arsenic concentrations in groundwater may lead to thousands of cases of arsenicosis in the near future if mitigating actions are not taken.  相似文献   

2.
Groundwater and core sediments of two boreholes (to a depth of 50 m) from the Chapai-Nawabganj area in northwestern Bangladesh were collected for arsenic concentration and geochemical analysis. Groundwater arsenic concentrations in the uppermost aquifer (10-40 m of depth) range from 2.8 μg L−1 to 462.3 μg L−1. Groundwater geochemical conditions change from oxidized to successively more reduced, higher As concentration with depth. Higher sediment arsenic levels (55 mg kg−1) were found within the upper 40 m of the drilled core samples. X-ray absorption near-edge structure spectroscopy was employed to elucidate the arsenic speciation of sediments collected from two boreholes. Environmental scanning electron microscopy and transmission X-ray microscopy were used to investigate the characteristics of FeOOH in sediments which adsorb arsenic. In addition, a pH-Eh diagram was drawn using the Geochemist's Workbench (GWB) software to elucidate the arsenic speciation in groundwater. The dominant groundwater type is Ca-HCO3 with high concentrations of As, Fe and Mn but low levels of NO3 and SO42−. Sequential extraction analysis reveals that Mn and Fe hydroxides and organic matter are the major leachable solids carrying As. High levels of arsenic concentration in aquifers are associated with fine-grained sediments. Fluorescent intensities of humic substances indicate that both groundwater and sediments in this arsenic hotspot area contain less organic matter compared to other parts of Bengal basin. Statistical analysis clearly shows that As is closely associated with Fe and Mn in sediments while As is better correlated with Mn in groundwater. These correlations along with results of sequential leaching experiments suggest that reductive dissolution of MnOOH and FeOOH mediated by anaerobic bacteria represents an important mechanism for releasing arsenic into the groundwater.  相似文献   

3.
Misiak K  Casey E  Murphy CD 《Water research》2011,45(11):3512-3520
Membrane aerated biofilm reactors (MABRs) have potential in wastewater treatment as they permit simultaneous COD minimisation, nitrification and denitrification. Here we report on the application of the MABR to the removal of fluorinated xenobiotics from wastewater, employing a Pseudomonas knackmussii monoculture to degrade the model compound 4-fluorobenzoate. Growth of biofilm in the MABR using the fluorinated compound as the sole carbon source occurred in two distinct phases, with early rapid growth (up to 0.007 h−1) followed by ten-fold slower growth after 200 h operation. Furthermore, the specific 4-fluorobenzoate degradation rate decreased from 1.2 g g−1 h−1 to 0.2 g g−1 h−1, indicating a diminishing effectiveness of the biofilm as thickness increased. In planktonic cultures stoichiometric conversion of substrate to the fluoride ion was observed, however in the MABR, approximately 85% of the fluorine added was recovered as fluoride, suggesting accumulation of ‘fluorine’ in the biofilm might account for the decreasing efficiency. This was investigated by culturing the bacterium in a tubular biofilm reactor (TBR), revealing that there was significant fluoride accumulation within the biofilm (0.25 M), which might be responsible for inhibition of 4-fluorobenzoate degradation. This contention was supported by the observation of the inhibition of biofilm accumulation on glass cover slips in the presence of 40 mM fluoride. These experiments highlight the importance of fluoride ion accumulation on biofilm performance when applied to organofluorine remediation.  相似文献   

4.
Klitzke S  Beusch C  Fastner J 《Water research》2011,45(3):1338-1346
The occurrence of the cyanobacterial toxins anatoxin-a (ATX) and cylindrospermopsin (CYN) in surface waters has been reported throughout the world. Beside degradation, sorption is an important pathway for toxin elimination if these resources are used for drinking water production via sediment passage. However, to date studies that systematically investigated sorption of these toxins onto sediments are lacking. Therefore, the aim of our work was (i) to determine the adsorption coefficients of ATX and CYN according to the Freundlich and Langmuir model for sediments of various textures and (ii) to derive sorption-relevant sediment characteristics. We determined sorption parameters in air-dried samples of eight differently textured sediments using batch experiments. Results for both toxins showed best fits with the Langmuir model. Organic C proved to be the main sediment parameter determining CYN sorption. There was no or little CYN sorption on sandy and silty sediments (0-39 μg kg−1), respectively, presumably due to charge repulsion from the negatively charged surfaces. Sorption of ATX (max. sorbent loading ranging from 47 to 656 μg kg−1) was much stronger than that of CYN (max. sorbent loading ranging from 0 to 361 μg kg−1) and predominantly controlled by clay and to a minor degree also by organic C and silt. While ATX sorption to most sediments occurred mainly through cation exchange this mechanism played only a minor role in CYN sorption to organic C. Hence, high mobility for CYN and moderate mobility for ATX during sediment passage has to be expected.  相似文献   

5.
With the purpose of knowing seasonal variations of Cd, Cr, Hg and Pb in a river basin with past and present mining activities, elemental concentrations were measured in six fish species and four crustacean species in Baluarte River, from some of the mining sites to the mouth of the river in the Pacific Ocean between May 2005 and March 2006. In fish, highest levels of Cd (0.06 μg g− 1 dry weight) and Cr (0.01 μg g− 1) were detected during the dry season in Gobiesox fluviatilis and Agonostomus monticola, respectively; the highest levels of Hg (0.56 μg g− 1) were detected during the dry season in Guavina guavina and Mugil curema. In relation to Pb, the highest level (1.65 μg g− 1) was detected in A. monticola during the dry season. In crustaceans, highest levels of Cd (0.05 μg g− 1) occurred in Macrobrachium occidentale during both seasons; highest concentration of Cr (0.09 μg g− 1) was also detected in M. occidentale during the dry season. With respect to Hg, highest level (0.20 μg g− 1) was detected during the rainy season in Macrobrachium americanum; for Pb, the highest concentration (2.4 μg g− 1) corresponded to Macrobrachium digueti collected in the dry season. Considering average concentrations of trace metals in surficial sediments from all sites, Cd (p < 0.025), Cr (p < 0.10) and Hg (p < 0.15) were significantly higher during the rainy season. Biota sediment accumulation factors above unity were detected mostly in the case of Hg in fish during both seasons. On the basis of the metal levels in fish and crustacean and the provisional tolerable weekly intake of studied elements, people can eat up to 13.99, 0.79 and 2.34 kg of fish in relation to Cd, Hg and Pb, respectively; regarding crustaceans, maximum amounts were 11.33, 2.49 and 2.68 kg of prawns relative to levels of Cd, Hg and Pb, respectively.  相似文献   

6.
Anaerobic digestion of animal waste at a low range of mesophilic conditions has not been well described to date. In this study, laboratory-scale semi-continuously fed anaerobic digesters treating pig manure were operated at 28 and 38 °C with organic loading rates ranging from 1.3 to 4.3 g ODM L−1 d−1. The estimated biomass yield was higher at 28 °C (0.065 g VSS g−1 CODremoved) than at 38 °C (0.016 g VSS g−1 CODremoved). The resulting calculated biomass concentration range at 28 and 38 °C was 1.2–2.4 and 0.3–0.6g VSS L−1, respectively, which fitted well with a Michaelis–Menten type function. These VSS results are one or two orders of magnitude lower than previously reported for manure-fed digesters. Although maximum specific substrate utilisation rate at 38 °C is five-fold that at 28 °C, higher biomass yield in the digester at 28 °C seemed to compensate for the adverse effects of lower temperature on digester performance.  相似文献   

7.
In this study, the production of polyhydroxyalkanoates (PHAs) from waste activated sludge (WAS) was evaluated. PHAs were produced from fermented WAS pretreated via high-pressure thermal hydrolysis, a stream characterised by high levels of nutrients (approximately 3.5 g N L−1 and 0.5 g P L−1) and soluble organics. PHA-storing organisms were successfully enriched at high organic loading rates (6 g CODsol L−1 d−1) under aerobic dynamic feeding in sequencing batch reactors at a sludge retention time of 6 d with a short feast length less than 20% of the cycle, and a maximum substrate concentration during feast of 1 g CODVFA L−1. The biomass enrichment, characterised by a decrease in species evenness based on Lorenz curves, provided a biomass that accumulated 25% PHA on a dry-biomass basis with yields on VFA of 0.4 Cmol Cmol−1 in batch tests. The PHA consisted of ∼70 mol% 3-hydroxybutyrate and ∼30 mol% 3-hydroxyvalerate, and presented high thermal stability (Td = 283-287 °C) and a molecular mass ranging from 0.7 to 1.0 × 106 g mol−1. Overall PHA storage was comparable to that achieved with other complex substrates; however, lower PHA storage rates (0.04-0.05 Cmol PHA−1 Cmol X−1 h−1) and productivities (3-4 Cmol PHA L−1 h−1) were probably associated with a biomass-growth and high-respiration response induced by high levels of non-VFA organics (40-50% of CODsol in feed) and nutrients. PHA production is feasible from pretreated WAS, but the enrichment and accumulation process require further optimisation. A milder WAS pretreatment yielding lower levels of non-VFA organics and readily available nutrients may be more amenable for improved performance.  相似文献   

8.
Antimony (Sb) has received increasing attention recently due to its toxicity and potential human carcinogenicity. In the present work, drinking water, fish and algae samples were collected from the Xikuangshan (XKS) Sb mine area in Hunan, China. Results show that serious Sb and moderate arsenic (As) contamination is present in the aquatic environment. The average Sb concentrations in water and fish were 53.6 ± 46.7 μg L− 1 and 218 ± 113 μg kg− 1 dry weight, respectively. The Sb concentration in drinking water exceeded both Chinese and WHO drinking water guidelines by 13 and 3 times, respectively. Antimony and As concentrations in water varied with seasons. Fish gills exhibited the highest Sb concentrations but the extent of accumulation varied with habitat. Antimony enrichment in fish was significantly lower than that of As and Hg.  相似文献   

9.
Lürling M  Faassen EJ 《Water research》2012,46(5):1447-1459
Sediment dredging and Phoslock® addition were applied individually and in combination in an enclosure experiment in a Dutch hypertrophic urban pond. These measures were applied to control eutrophication and reduce the risk of exposure to cyanobacterial toxins. Over the 58 days course of the experiment, cyanobacteria (predominantly Microcystis aeruginosa) gradually decreased until they dropped below the level of detection in the combined treated enclosures, they were reduced in dredged enclosures, but remained flourishing in controls and Phoslock® treated enclosures. Cyanobacteria were, however, less abundant in the enclosures (medians chlorophyll-a 30-87 μg l−1) than in the pond (median chlorophyll-a 162 μg l−1), where also a thick surface scum covered one-third of the pond for many weeks.Soluble reactive phosphorus (SRP), total phosphorus and total nitrogen concentrations were significantly lower in the combined dredged and Phoslock® treated enclosures than in controls. Median SRP concentrations were 24 μg P l−1 in the combined treatment, 58 μg P l−1 in dredged enclosures, and 90 μg P l−1 in controls and 95 μg P l−1 in Phoslock® treated enclosures. Hence, the combined treatment was most effective in decreasing SRP and TP, and in lowering cyanobacterial biomass.Microcystin (MC) concentrations were analyzed by LC-MS/MS. MC concentrations and cyanobacterial biomass were positively correlated in all treatments. Mean MC concentrations in controls (71 μg l−1), Phoslock® treated enclosures (37 μg l−1) and dredged enclosures (25 μg l−1) exceeded the provisional guideline of 20 μg l−1, whereas mean MC concentrations were 13 μg l−1 in the combined treated enclosures. All samples contained the MC variants dmMC-RR, MC-RR, MC-YR, dmMC-LR and MC-LR; traces of MC-LY and nodularin were detected in few samples. The different treatments did not change the relative contribution of the variants to the MC pool; MC profiles in all treatments and the pond showed dominance of MC-RR followed by MC-LR. In the surface scum of the pond, total MC concentration was extremely high (64000 μg l−1 or 1300 μg g−1 DW), which poses a serious health hazard to children playing on the banks of the pond. Based on our results and pond characteristics, we propose combined sediment dredging and Phoslock® addition, fish removal and strong reduction of duck feeding by the neighborhood as most promising measures controlling cyanobacterial hazards in this pond.  相似文献   

10.
The sorption of the arsenite (AsO33−) and the arsenate (AsO43−) ions and their conjugate acids onto iron oxides is one of main processes controlling the distribution of arsenic in the environment. The present work intends to provide a large vibrational spectroscopic database for comparison of As(III) and As(V) speciation in aqueous solutions and at the iron oxide - solution interface. With this purpose, ferrihydrite, feroxyhyte, goethite and hematite were firstly synthesized, characterized in detail and used for adsorption experiments. Raman spectra were recorded from As(III) and As(V) aqueous solutions at various pH conditions selected in order to highlight arsenic speciation. Raman Scattering and Diffuse Reflectance Infrared Fourier Transform (DRIFT) studies were carried out to examine the respective As-bonding mechanisms. The collected data were curve-fitted and discussed according to molecular symmetry concepts. X-ray Absorption Near Edge Spectroscopy (XANES) was applied to confirm the oxidation state of the sorbed species. The comprehensive spectroscopic investigation contributes to a better understanding of arsenic complexation by iron oxides.  相似文献   

11.
Historically, the locations of cities mainly depend on the available water source and the urban river not only supplies the fresh water to city but also receives its wastewaters. To analyze the influences of urban zone on its receiving water river, the Jialu River in Henan Province, China, a typical urban river was chosen. Water and sediment samples were collected along the river in 2007 to analyze the concentrations of xenobiotic endocrine-disrupting chemicals (XEDCs) including nonylphenol (NP), octylphenol (OP) and bisphenol A (BPA) in surface water and sediment. The results showed that the concentrations of OP, NP and BPA in surface water were 20.9-63.2 ng L−1 (mean 39.8 ng L−1), 75.2-1520 ng L−1 (mean 645 ng L−1), 410-2990 ng L−1 (mean 1535 ng L−1), respectively. The lowest and highest concentrations of XEDCs in surface water were found in the upper stream and downstream of Zhengzhou urban zone, which was regarded as the major discharge source of these chemicals to this river. The concentrations of OP, NP and BPA in the sediment were 15.9-31.1 ng g−1, 145-349 ng g−1 and 626-3584 ng g−1 with the average concentrations of 21.4 ng g−1, 257 ng g−1 and 2291 ng g−1, respectively. The results of in situ sediment-water partition of XEDCs showed that the partition coefficients (log Koc′) in the downstream were higher than that in the upstream, which was mainly caused by the retransfer of surface sediment from the upper stream to the downstream. Comparison of measured and theoretical inventories of XEDCs in sediment indicated that the residual time of XEDCs in sediment in the river was about 5 years, which was in the same order of magnitude with its big flood frequency. In order to predict concentration variances of XEDCs in surface water, a fugacity-hydrodynamic model was developed according to the concept of in series completely stirred tank reactors (CSTR). The model results showed that about 29-65% of XEDCs derived from the urban zone (about 2.0 t yr−1) would finally dissipate from aqueous phase in the 170 km downstream of the river. Assuming the discharge amount of XEDCs from the urban zone remaining constant, the predicted concentrations of the total XEDCs in the over 90% river reach would be higher than 1.0 μg L−1 under all normal, high water and low water season in 2007.  相似文献   

12.
In order to estimate atmospheric metal deposition in Southern Europe since the beginning of the Industrial Period (~ 1850 AD), concentration profiles of Pb, Zn and Cu were determined in four 210Pb-dated peat cores from ombrotrophic bogs in Serra do Xistral (Galicia, NW Iberian Peninsula). Maximum metal concentrations varied by a factor of 1.8 for Pb and Zn (70 to 128 μg g−1 and 128 to 231 μg g−1, respectively) and 3.5 for Cu (11 to 37 μg g−1). The cumulative metal inventories of each core varied by a factor of 3 for all analysed metals (132 to 329 μg cm−2 for Pb, 198 to 625 μg cm−2 for Zn and 22 to 69 μg cm−2 for Cu), suggesting differences in net accumulation rates among peatlands. Although results suggest that mean deposition rates vary within the studied area, the enhanced 210Pb accumulation and the interpretation of the inventory ratios (210Pb/Pb, Zn/Pb and Cu/Pb) in two bogs indicated that either a record perturbation or post-depositional redistribution effects must be considered. After correction, Pb, Zn and Cu profiles showed increasing concentrations and atmospheric fluxes since the mid-XXth century to maximum values in the second half of the XXth century. For Pb, maximum fluxes were observed in 1955-1962 and ranged from 16 to 22 mg m−2 yr−1 (mean of 18 ± 1 mg m−2 yr−1), two orders of magnitude higher than in the pre-industrial period. Peaks in Pb fluxes in Serra do Xistral before the period of maximum consumption of leaded petrol in Europe (1970s-1980s) suggest the dominance of local pollutant sources in the area (i.e. coal mining and burning). More recent peaks were observed for Zn and Cu, with fluxes ranging from 32 to 52 mg m−2 yr−1 in 1989-1996, and from 4 to 9 mg m−2 yr−1 in 1994-2001, respectively. Our results underline the importance of multi-core studies to assess both the integrity and reliability of peat records, and the degree of homogeneity in bog accumulation. We show the usefulness of using the excess 210Pb inventory to distinguish between differential metal deposition, accumulation or anomalous peat records.  相似文献   

13.
The current work aimed to compile existing information to better understand the source, fate and effects of metallic contaminants in one catchment-receiving basin system (Iron Cove) in Sydney Harbour (Australia). Copper, Pb and Zn concentrations of potential source materials, i.e. soils (mean 62, 410 and 340 µg g− 1, respectively) and road dust (mean 160, 490 and 520 µg g− 1, respectively) and in materials being transported to the estuary, i.e. in gully pots (mean 110, 200 and 260 µg g− 1 for Cu, Pb, and Zn, respectively), in bedload (mean 210, 880 and 1700 µg g− 1, respectively) and particulates in canals draining the catchment (mean 325, 290 and 1865 µg g− 1, respectively) were highly enriched. Estuarine sediments in the receiving basin are enriched 20 times over pre-anthropogenic concentrations and are toxic to benthic animals at the canal mouths. Stormwater remediation is required to reduce metal loads to the adjacent estuary.  相似文献   

14.
The concentrations of total mercury (THg) and methylmercury (MeHg) in the sediments of Lake Shihwa, an artificial salt lake in Korea located near two large industrial complexes, were determined to investigate the state of Hg contamination in the lake sediments and the effect of local Hg source. THg and MeHg concentrations in the sediments, monitored for 2 years, ranged from 0.02 to 0.28 µg g− 1 and ≤ 0.026 to 0.67 ng g− 1, respectively. The overall distribution of Hg in lake sediments showed higher values near industrial complexes and in the central part of the lake. However, the correlations between Hg and environmental factors, such as organic material (OM) content, and acid volatile sulfide (AVS), were weak and did not clearly explain the variation in Hg distribution. The spatial distribution of sediment Hg and monthly precipitation data during the sampling period showed that the amount of runoff following rain events and water gate operation may be additional important factors regulating Hg level and distribution in lake sediments. The levels of THg in fish species in this lake ranged from 9.8 to 35 ng g− 1, suggesting that the bioavailability of sediment Hg in the lake may be low. Although the THg concentrations in Lake Shihwa sediment were lower than those in other foreign study sites, they were higher than in neighboring coastal regions, and are constantly increasing. This result indicates that the nearby industrial complexes may be the major source of Hg found in the sediments of Lake Shihwa.  相似文献   

15.
Zhang Y  Guo CS  Xu J  Tian YZ  Shi GL  Feng YC 《Water research》2012,46(9):3065-3073
In this work, three receptor models (Principal Component Analysis-Multiple Linear Regression (PCA-MLR) model, Unmix model and Positive Matrix Factorization (PMF) model) were employed to investigate potential source apportionment of PAHs in sediments from Taihu Lake, China. A total of 15 priority PAHs in 29 sediments from Taihu Lake were measured, with ∑PAHs (sum of 15 PAHs) concentrations ranging from 209 to 1003 ng g−1 dw. Source apportionment results derived from three different models were similar, indicating that the highest contribution to ∑PAHs was from vehicular emission (53.6-54.3%), followed by coal combustion (23.8-28.8%) and wood combustion (11.9-16.0%). The contribution of mixed wood and coal combustion source identified by PCA-MLR was 41.3%. For the first time the risk assessment for each identified source category was quantitatively calculated by combining the BaP equivalents (BaPE) values with estimated source contributions. The results showed that vehicular emission posed the highest toxic risk, with BaPE values of 26.9-31.5 ng g−1 dw, and the BaPE values for coal combustion and wood combustion were 6.56-15.6 ng g−1 dw and 2.94-6.11 ng g−1 dw, respectively. The distributions of contribution and BaPE for each identified source category were studied as well, and showed similar trends among the sampling sites, for each source category.  相似文献   

16.
The paper describes the aerobic degradation of carbamazepine (CBZ), an anti-epileptic drug widely found in aquatic environment, from Erlenmeyer flask to bioreactor by the white-rot fungus Trametes versicolor. In Erlenmeyer flask, CBZ at approximately 9 mg L−1 was almost completely eliminated (94%) after 6 d, while at near environmentally relevant concentrations of 50 μg L−1, 61% of the contaminant was degraded in 7 d. Acridone, acridine, 10,11-dihydro-10,11-dihydroxy-CBZ, and 10, 11-epoxy-CBZ were identified as major metabolites, confirming the degradation of CBZ. The degradation process was then carried out in an air pulsed fluidized bioreactor operated in batch and continuous mode. Around 96% of CBZ was removed after 2 days in batch mode operation, and 10,11-dihydro-10,11-epoxycarbamazepine was found as unique metabolite. In bioreactor operated in continuous mode with a hydraulic retention time of 3 d, 54% of the inflow concentration (approx. 200 μg L−1) was reduced at the steady state (25 d) with a CBZ degradation rate of 11.9 μg CBZ g−1 dry weight d−1. No metabolite was detected in the culture broth. Acute toxicity tests (Microtox) indicated that the final culture broth in both batch and continuous mode operation were non toxic, with 15 min EC50 values of 24% and 77%, respectively.  相似文献   

17.
Glazed and non-glazed earthenware is traditionally and widely used in Turkey and most of the Mediterranean and the Middle East countries for cooking and conservation of foodstuff. Acid-leaching tests have been carried out to determine whether the use of glazed and non-glazed earthenware may constitute a human health hazard risk to the consumers. Earthenware was leached with 4% acetic acid and 1% citric acid solutions, and arsenic in the leachates was measured using hydride generation atomic absorption spectrometry. Arsenic concentrations in the leach solution of non-glazed potteries varied from 30.9 to 800 μg L− 1, while the glazed potteries varied generally from below the limit of detection (0.5 μg L− 1) to 30.6 μg L− 1, but in one poorly glazed series it reached to 110 μg L− 1. Therefore, the risk of arsenic poisoning by poorly glazed and non-glazed potteries is high enough to be of concern. It appears that this is the first study reporting arsenic release from earthenware into food.  相似文献   

18.
Better understanding of the processes controlling arsenic bioavailability in the rhizosphere is important to enhance plant arsenic accumulation by hyperaccumulators. This greenhouse experiment was conducted to evaluate the chemical characteristics of the rhizosphere of two arsenic hyperaccumulators Pterisvittata and Pterisbiaurita. They were grown for 8 weeks in rhizopots containing arsenic-contaminated soils (153 and 266 mg kg− 1 arsenic). Bulk and rhizosphere soil samples were analyzed for water-soluble As (WS-As) and P (WS-P), pH, and dissolved organic carbon (DOC). Comparing the two plants, P.vittata was more tolerant to arsenic and more efficient in arsenic accumulation than P.biaurita, with the highest frond arsenic being 3222 and 2397 mg kg− 1. Arsenic-induced root exudates reduced soil pH (by 0.74-0.92 units) and increased DOC concentrations (2-3 times) in the rhizosphere, resulting in higher WS-P (2.6-3.8 times higher) compared to the bulk soil. Where there was no difference in WS-As between the rhizosphere and bulk soil in soil-153 for both plants, WS-As in the rhizosphere was 20-40% higher than those in bulk soil in soil-266, indicating that the rate of As-solubilization was more rapid than that of plant uptake. The ability to solubilize arsenic via root exudation in the rhizosphere and the ability to accumulate more P under arsenic stress may have contributed to the efficiency of hyperaccumulator plants in arsenic accumulation.  相似文献   

19.
The study of a Posidonia oceanica mat (a peat-like marine sediment) core has provided a record of changes in heavy metal abundances (Fe, Mn, Ni, Cr, Cu, Pb, Cd, Zn, As and Al) since the Mid-Holocene (last 4470 yr) in Portlligat Bay (NW Mediterranean). Metal contents were determined in P. oceanica. Both, the concentration records and the results of principal components analysis showed that metal pollution in the studied bay started ca. 2800 yr BP and steadily increased until present. The increase in Fe, Cu, Pb, Cd, Zn and As concentrations since ca. 2800 yr BP and in particular during Greek (ca. 2680-2465 cal BP) and Roman (ca. 2150-1740 cal BP) times shows an early anthropogenic pollution rise in the bay, which might be associated with large- and short-scale cultural and technological development. In the last ca. 1000 yr the concentrations of heavy metals, mainly derived from anthropogenic activities, have significantly increased (e.g. from ~ 15 to 47 μg g− 1 for Pb, ~ 23 to 95 μg g− 1 for Zn and ~ 8 to 228 μg g− 1 for As). Our study demonstrates for the first time the uniqueness of P. oceanica meadows as long-term archives of abundances, patterns, and trends of heavy metals during the Late Holocene in Mediterranean coastal ecosystems.  相似文献   

20.
The kinetics of oxidation and disinfection processes during ozonation in a full-scale reactor treating secondary wastewater effluent were investigated for seven ozone doses ranging from 0.21 to 1.24 g O3 g−1 dissolved organic carbon (DOC). Substances reacting fast with ozone, such as diclofenac or carbamazepine (kP,O3 > 104 M−1 s−1), were eliminated within the gas bubble column, except for the lowest ozone dose of 0.21 g O3 g−1 DOC. For this low dose, this could be attributed to short-circuiting within the reactor. Substances with lower ozone reactivity (kP,O3 < 104 M−1 s−1) were only fully eliminated for higher ozone doses.The predictions of micropollutant oxidation based on coupling reactor hydraulics with ozone chemistry and reaction kinetics were up to a factor of 2.5 higher than full-scale measurements. Monte Carlo simulations showed that the observed differences were higher than model uncertainties. The overestimation of micropollutant oxidation was attributed to a protection of micropollutants from ozone attack by the interaction with aquatic colloids. Laboratory-scale batch experiments using wastewater from the same full-scale treatment plant could predict the oxidation of slowly-reacting micropollutants on the full-scale level within a factor of 1.5. The Rct value, the experimentally determined ratio of the concentrations of hydroxyl radicals and ozone, was identified as a major contribution to this difference.An increase in the formation of bromate, a potential human carcinogen, was observed with increasing ozone doses. The final concentration for the highest ozone dose of 1.24 g O3 g−1 DOC was 7.5 μg L−1, which is below the drinking water standard of 10 μg L−1. N-Nitrosodimethylamine (NDMA) formation of up to 15 ng L−1 was observed in the first compartment of the reactor, followed by a slight elimination during sand filtration. Assimilable organic carbon (AOC) increased up to 740 μg AOC L−1, with no clear trend when correlated to the ozone dose, and decreased by up to 50% during post-sand filtration. The disinfection capacity of the ozone reactor was assessed to be 1-4.5 log units in terms of total cell counts (TCC) and 0.5 to 2.5 log units for Escherichia coli (E. coli). Regrowth of up to 2.5 log units during sand filtration was observed for TCC while no regrowth occurred for E. coli. E. coli inactivation could not be accurately predicted by the model approach, most likely due to shielding of E. coli by flocs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号