首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The effect of different ratios of propionic to acetic acid on the efficiency of enhanced biological phosphorus removal (EBPR) from real wastewater supplemented with volatile fatty acids (VFAs) was investigated. Two sequencing batch reactors (SBRs) were used to acclimate two types (SBR1 and SBR2) of biomass. They were cultured and studied using real wastewater with an average propionic to acetic acid carbon molar ratio of 0.16 and 2.06, respectively. The laboratory results showed that for a given long-term cultured biomass the more the soluble ortho-phosphate (SOP) was released in the anaerobic stage, the higher the SOP was taken up in the aerobic phase. However, the SBR2 biomass had a much greater SOP uptake to release ratio than SBR1, which resulted in a higher SOP removal efficiency than SBR1 (average 87.3% versus 76.9% in SBRs experiments, and 93.5% against 68.1% in batch tests). The SBR2 biomass therefore had a higher SOP uptake ability than the SBR1 for a given amount of SOP release. In addition, the SBR1 had a higher secondary SOP release following VFAs uptake. It was found that the SBR2 biomass synthesized and utilized less observable polyhydroxyalkanoates (PHAs) during the anaerobic and aerobic stage respectively than SBR1. The apparent PHAs utilization efficiency for SOP uptake with the SBR2 biomass was much greater than with the SBR1, and the SBR2 biomass synthesized less glycogen during aerobiosis than SBR1, which might mean a higher PHAs fraction was used for SOP removal, resulting in the increased efficiency with the long-term cultured SBR2 biomass. Higher propionic acid content led to superior EBPR in long-term cultivation, but was transiently detrimental in the short term.  相似文献   

2.
Hu Z  Ferraina RA  Ericson JF  Smets BF 《Water research》2005,39(15):3501-3510
Biodegradation rates of benzoate and related aromatic compounds, 3-nitrobenzoate, 4-chlorobenzoate, 4-chlorophenol, and 2,4-dichlorophenol by unexposed (unacclimated) and long-term exposed (acclimated) biomass were quantified using a modified fed-batch technique. The acclimated biomass was taken after approximately 1-year of operation from three lab-scale sequencing batch reactors (SBR). These reactors were operated under various cycling electron acceptor conditions with a continuous feed of a synthetic wastewater containing biogenic and nonbiogenic chemicals including benzoate, 3-nitrobenzoate, and 4-chlorophenol, but not 4-chlorobenzoate or 2,4-dichlorophenol. The unexposed biomass was taken from a full-scale wastewater treatment plant, which constituted one of the original sources of inoculum for the lab-scale SBRs. The acclimated biomass manifested high removal rates of benzoate and related aromatic compounds with additional removal of structurally similar chemicals (4-chlorobenzoate and 2,4-dichlorophenol). The unacclimated biomass showed no removal of 3-nitrobenzoate, 4-chlorobenzoate or 2,4-dichlorophenol. Addition of biogenic substrates reduced the degradation of most aromatic compounds tested, but it enhanced 2,4-dichlorophenol removal. Biodegradation rates of each aromatic compound with the biomass from the anoxic/aerobic SBR were further determined under anaerobic (absence of aeration and NO3-), anoxic (no aeration, but with surplus NO3-), standard oxygen (DO > 0.2 mg/L), and elevated oxygen (DO > 25 mg/L) conditions. The removal rate of both benzoate and 3-nitrobenzoate decreased under anaerobic condition but not under the anoxic condition; 4-chlorophenol biodegradation, on the other hand, was reduced significantly under both anoxic and anaerobic conditions. The removal rates of aromatic compounds, particularly those of 3-nitrobenzoate and 2,4-dichlorophenol, increased significantly under elevated dissolved oxygen conditions. Our results demonstrated that when the biochemical conditions shifted from oxygen-respiration to nitrate respiration, to anaerobiosis, the biodegradation rates of test aromatic compounds decreased or ceased.  相似文献   

3.
The removal efficiencies of nitrogen, phosphorus and COD from waste water were examined using sand filtration systems with Phragmites australis (Cav.) Trin. ex. Steudel. The quality of effluent waters from the system with plant were far better than those from the one without plant, implying Phragmites could incorporate nitrogen and phosphorus into its tissues and promote phosphorus absorption onto the sand by the release of oxygen from the roots. The P-pot provided with the influent containing 198 mg l- of total nitrogen and 21 mg l-1 of total phosphorus had the highest biomass of Phragmites. Harvestable above-ground biomass accounted for about 3.5 kg m-2 and removable nitrogen and phosphorus accounted for 69 and 6 g m-2 respectively.The removal rates of total nitrogen and phosphorus in the system with Phragmites receiving variable amounts of COD were almost at the same level and also much better than those of the systems without plant, implying that the different COD concentrations in the influent media do not impair the removal efficiencies of nitrogen and phosphorus. Also Phragmites was found to resist COD concentration as high as 128 mg l-1, and signs of clogging were not detected in this system throughout the experiment.  相似文献   

4.
The combined processes of biological AsIII oxidation and removal of AsIII and AsV by zero-valent iron were investigated with synthetic water containing high AsIII concentration (10 mg L−1). Two up-flow fixed-bed reactors (R1 and R2) were filled with 2 L of sieved sand (d = 3 ± 1 mm) while zero-valent iron powder (d = 76 μm; 1% (w/w) of sand) was mixed evenly with sand in R2. Thiomonas arsenivorans was inoculated in the two reactors. The pilot unit was studied for 33 days, with HRT of 4 and 1 h. The maximal AsIII oxidation rate was 8.36 mg h−1 L−1 in R1 and about 45% of total As was removed in R2 for an HRT of 1 h. A first order model fitted well with the AsIII concentration evolution at the different levels in R1. At the end of the pilot monitoring, batch tests were conducted with support collected at different levels in R1. They showed that bacterial AsIII oxidation rate was correlated with the axial length of reactor, which could be explained by biomass distribution in reactor or by bacterial activity. In opposition, AsIII oxidation rate was not stable in R2 due to the simultaneous bacterial AsIII oxidation and chemical removal by zero-valent iron and its oxidant products. However, a durable removal of total As was realized and zero-valent iron was not saturated by As over 33 days in R2. Furthermore, the influence of zero-valent iron and its oxidant corrosion products on the evolution of AsIII-oxidizing bacteria diversity was highlighted by the molecular fingerprinting method of PCR-DGGE using aoxB gene as a functional marker of aerobic AsIII oxidizers.  相似文献   

5.
《Water research》1986,20(10):1273-1279
The methanogenic phase of anaerobic digestion is often considered to be the most sensitive step in the overall process. Chloroform, a model industrial toxicant was assayed with methane fermentation, acetate enrichment cultures. Commonly, microbial toxicity response studies have observed the toxicity response over a relatively short time span, on the order of a few hours or days. In addition, cessation of observed cell function has often been assumed to be equated with death of the cells. The purpose of this study was to determine the toxicity response under various conditions over prolonged periods, on the order of months, with major emphasis on the recovery pattern. The following parameters were observed: concentration of toxicant, solids retention time, biomass concentration, toxicant exposure time, cell age, toxicant administration pattern and temperature.The methane fermentation culture was able to acclimate to the presence of chloroform while fermenting acetate to methane. Inhibition of unacclimated cultures was noted at 0.5 mg l−1, but with acclimation 15 mg l−1 could be tolerated. There was a clear correlation between dose and inhibition. Recovery from inhibition was a function of SRT and biomass concentration. Younger cells were more resistant than older cells. The duration of chloroform exposure was directly related to the degree of residual inhibition. Reduced temperature delayed recovery of gas production from slug doses of chloroform. Radio tagged chloroform studies indicated that recovery of methane production occurred due to acclimation of the methanogens to the presence of chloroform and not from the disappearance of chloroform by microbial degradation.  相似文献   

6.
The activity of various anaerobic microbes, including sulfate reducers (SRB), iron reducers (FeRP) and methanogens (MPA) has been linked to mercury methylation in aquatic systems, although the relative importance of each microbial group in the overall process is poorly understood in natural sediments. The present study focused on the biogeochemical factors (i.e. the relative importance of various groups of anaerobic microbes (FeRP, SRB, and MPA) that affect net monomethylmercury (MMHg) formation in contaminated sediments of the St. Lawrence River (SRL) near Cornwall (Zone 1), Ontario, Canada. Methylation and demethylation potentials were measured separately by using isotope-enriched mercury species (200Hg2+ and MM199Hg+) in sediment microcosms treated with specific microbial inhibitors. Sediments were sampled and incubated in the dark at room temperature in an anaerobic chamber for 96 h. The potential methylation rate constants (Km) and demethylation rates (Kd) were found to differ significantly between microcosms. The MPA-inhibited microcosm had the highest potential methylation rate constant (0.016 d−1), whereas the two SRB-inhibited microcosms had comparable potential methylation rate constants (0.003 d−1 and 0.002 d−1, respectively). The inhibition of methanogens stimulated net methylation by inhibiting demethylationand by stimulating methylation along with SRB activity. The inhibition of both methanogens and SRB was found to enhance the iron reduction rates but did not completely stop MMHg production. The strong positive correlation between Km and Sulfate Reduction Rates (SRR) and between Kd and Methane Production Rates (MPR) supports the involvement of SRB in Hg methylation and MPA in MMHg demethylation in the sediments. In contrast, the strong negative correlation between Kd and Iron Reduction Rates (FeRR) shows that the increase in FeRR corresponds to a decrease in demethylation, indicating that iron reduction may influence net methylation in the SLR sediments by decreasing demethylation rather than favouring methylation.  相似文献   

7.
An experiment using nitrogen stable isotope tracer (15N) was conducted to track the fate of nitrogen derived from cyanobacterial blooms and the effectiveness with which the seasonal blooms are retained by vegetated and unvegetated sediment in a large shallow eutrophic lake (Lake Taihu, China). 15N enriched Microcystis was injected into both unvegetated sediment and sediment occupied by common reed (Phragmites australis) in the littoral zone. Nutrient retention by the vegetated sediment was greater than by the unvegetated sediment, resulting in higher δ15N in the sediment nitrogen pool. The labeled Microcystis material was also distributed deeper into the vegetated sediment than the unvegetated sediment. A portion of the Microcystis-derived nitrogen was quickly assimilated, appearing first in the belowground biomass and subsequently in the aboveground biomass of the reed plants. The labeled nitrogen was found to support new growth as evidenced by 15N enrichment of new leaves. This study indicates that common reed beds in the littoral zone may play an important role in retention of sedimented planktonic materials.  相似文献   

8.
Lalman JA  Bagley DM 《Water research》2001,35(12):2975-2983
Oleic acid, an 18 carbon acid with one double bond (C18:1) was degraded anaerobically to palmitic (C16:0) and myristic (C14:0) acid by-products at 21 C by a culture unacclimated to long-chain fatty acids. These by-products were degraded to acetate and ultimately to methane. In comparison, no long-chain fatty acid by-products were observed in unacclimated anaerobic cultures receiving stearic (C18:0) acid although slow removal of stearic acid occurred. Oleic acid concentrations above 30mg l(-1) inhibited acetate degradation but stearic acid up to 100 mg l(-1) did not inhibit aceticlastic methanogenesis. Hydrogenotrophic methanogenesis was slightly inhibited by oleic and stearic acids. A thermodynamic basis for comparing anaerobic C18 acid degradation and predicting by-products is presented.  相似文献   

9.
Zhang X  Lin S  Chen Z  Megharaj M  Naidu R 《Water research》2011,45(11):3481-3488
The use of nanoscale zero-valent iron (nZVI) to remediate contaminated groundwater is limited due to its lack of durability and mechanical strength. To address this issue, 20% (w/w) nZVI was loaded onto kaolinite as a support material (K-nZVI). More than 96% of Pb2+ was removed from aqueous solution using K-nZVI at an initial condition of 500 mg/L Pb2+ within 30 min under the conditions of 10 g/L of K-nZVI, pH 5.10 and a temperature of 30 °C. To understand the mechanism of removal of Pb2+, various techniques were implemented to characterize K-nZVI. Scanning electron microscopy (SEM) indicated that K-nZVI had a suitable dispersive state with a lower aggregation, where the mean specific surface area and average particle size as determined by the BET-N2 method and X-ray diffraction (XRD), were 26.11 m2/g and 44.3 nm, respectively. The results obtained from XRD, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) indicated that a small number of iron oxides formed on the surface of K-nZVI, suggesting that free Pb2+ was adsorbed onto K-nZVI and subsequently reduced to Pb0.  相似文献   

10.
Begum A  Gautam SK 《Water research》2011,45(7):2383-2391
In the present study, Mg0/ZnCl2 bimetallic system was evaluated for its efficiency to dechlorinate endosulfan and lindane in aqueous phase. Presence of acetone in the reaction mixture played an important role by increasing the solubilities of both pesticides and thereby accelerating its mass transfer. Water acetone ratio of 2:1 and 1:1 (v/v) was found optimum for the dechlorination of endosulfan and lindane respectively. Presence of H+ ions in the reaction mixture (50 μl ml−1 of glacial acetic acid) accelerated the degradation efficiency of 30 ppm initial concentration of endosulfan (96% removal) and lindane (98% removal) at Mg0/ZnCl2 dose of 5/1 mg ml−1 within 30 min of reaction. Dechlorination kinetics for endosulfan and lindane (10, 30 and 50 ppm initial concentration of each pesticide) with varying Mg0/ZnCl2 doses and the time course profiles of each pesticide were well fitted into the first order dechlorination reaction. The optimum observed rate constant (kobs’) values for endosulfan (0.2168, 0.1209 and 0.1614 min−1 for 10, 30 and 50 ppm initial concentration respectively) and lindane (0.1746, 0.1968 and 0.2253 min−1 for 10, 30 and 50 ppm initial concentration respectively) dechlorination were obtained when the reactions were conducted with doses of 7.5/1 mg ml−1 and 5/1 mg ml−1 Mg0/ZnCl2 respectively. Endosulfan and lindane were completely dechlorinated into their hydrocarbon skeletons namely, Bicyclo [2,2,1] hepta 2-5 diene and Benzene respectively as revealed by GCMS analysis.  相似文献   

11.
This paper presents results of testing models for the radioactive contamination of river water and bottom sediments by 90Sr, 137Cs and 239,240Pu. The scenario for the model testing was based on data from the Techa River (Southern Urals, Russia), which was contaminated as a result of discharges of liquid radioactive waste into the river. The endpoints of the scenario were model predictions of the activity concentrations of 90Sr, 137Cs and 239,240Pu in water and bottom sediments along the Techa River in 1996. Calculations for the Techa scenario were performed by six participant teams from France (model CASTEAUR), Italy (model MARTE), Russia (models TRANSFER-2, CASSANDRA, GIDRO-W) and Ukraine (model RIVTOX), all using different models. As a whole, the radionuclide predictions for 90Sr in water for all considered models, 137Cs for MARTE and TRANSFER-2, and 239,240Pu for TRANSFER-2 and CASSANDRA can be considered sufficiently reliable, whereas the prediction for sediments should be considered cautiously. At the same time the CASTEAUR and RIVTOX models estimate the activity concentrations of 137Cs and 239,240Pu in water more reliably than in bottom sediments. The models MARTE (239,240Pu) and CASSANDRA (137Cs) evaluated the activity concentrations of radionuclides in sediments with about the same agreement with observations as for water. For 90Sr and 137Cs the agreement between empirical data and model predictions was good, but not for all the observations of 239,240Pu in the river water-bottom sediment system. The modelling of 239,240Pu distribution proved difficult because, in contrast to 137Cs and 90Sr, most of models have not been previously tested or validated for plutonium.  相似文献   

12.
Radionuclides released to the atmosphere during dry weather (e.g. after a nuclear accident) may contaminate vegetable foods and cause exposure to humans via the food chain. To obtain experimental data for an appropriate assessment of this exposure path, dry deposition of radionuclides to leafy vegetables was studied under homogeneous and controlled greenhouse conditions. Gaseous 131I-tracer in predominant elemental form and particulate 134Cs-tracer at about 1 μm diameter were used to identify susceptible vegetable species with regard to contamination by these radionuclides. The persistence was examined by washing the harvested product with water. The vegetables tested were spinach (Spinacia oleracea), butterhead lettuce (Lactuca sativa var. capitata), endive (Cichorium endivia), leaf lettuce (Lactuca sativa var. crispa), curly kale (Brassica oleracea convar. acephala) and white cabbage (Brassica oleracea convar. capitata). The variation of radionuclides deposited onto each vegetable was evaluated statistically using the non-parametric Kruskal-Wallis Test and the U-test of Mann-Whitney. Significant differences in deposited 131I and 134Cs activity concentration were found among the vegetable species.For 131I, the deposition velocity to spinach normalized to the biomass of the vegetation was 0.5-0.9 cm3 g− 1 s− 1 which was the highest among all species. The particulate 134Cs deposition velocity of 0.09 cm3 g− 1 s− 1 was the highest for curly kale, which has rough and structured leaves. The lowest deposition velocity was onto white cabbage: 0.02 cm3 g− 1 s− 1 (iodine) and 0.003 cm3 g− 1 s− 1 (caesium). For all species, the gaseous iodine deposition was significantly higher compared to the particulate caesium deposition. The deposition depends on the sensitive parameters leaf area, stomatal aperture, and plant morphology. Decontamination by washing with water was very limited for iodine but up to a factor of two for caesium.  相似文献   

13.
Cation exchange during subsurface iron removal   总被引:1,自引:0,他引:1  
Subsurface iron removal (SIR), or in-situ iron removal, is an established treatment technology to remove soluble iron (Fe2+) from groundwater. Besides the adsorptive-catalytic oxidation theory, it has also been proposed that the injection of O2-rich water onsets the exchange of adsorbed Fe2+ with other cations, such as Ca2+ and Na+. In sand column experiments with synthetic and natural groundwater it was found that cation exchange (Na+-Fe2+) occurs during the injection-abstraction cycles of subsurface iron removal. The Fe2+ exchange increased at higher Na+ concentration in the injection water, but decreased in the presence of other cations in the groundwater. Field results with injection of elevated O2 concentrations (0.55 mM) showed increased Fe removal efficacy; the operational parameter V/Vi (abstraction volume with [Fe]<2 μM divided by the injection volume) increased from an average 7 to 16, indicating that not the exchangeable Fe2+ on the soil material is the limiting factor during injection, but it is the supply of O2 to the available Fe2+.  相似文献   

14.
Nitrogen removal in artificial wetlands   总被引:5,自引:0,他引:5  
This report describes investigations which have demonstrated the exceptional utility of artificial wetlands for the removal of nitrate from secondary wastewater effluents at relatively high application rates. The artificial wetlands (14 in number) were plastic-lined excavations containing emergent vegetation growing in gravel. Without supplemental additions of carbon, total nitrogen removal efficiency was low ( 25%) in both vegetated and unvegetated beds. When methanol was added to supplement the carbon supply and stimulate bacterial denitrification, the removal efficiency was extremely high (95% removal of total nitrogen at a wastewater application rate of 16.8 cm day−1). Since methanol is a relatively expensive form of carbon, we tested the feasibility of using plant biomass, mulched and applied to the surface of marsh beds, as an alternate source of carbon. At a wastewater application rate of 8.4 cm day−1, the mean total nitrogen removal efficiency for the mulch-amended beds was 86%. When the application rate was higher (16.8 cm day−1) the mean total nitrogen removal efficiency was lower, 60% in the mulch-amended beds.By using plant biomass as a substitute for methanol, the energy savings for a treatment facility serving a small community (3785 m3 day−1 or 1 mgd) would amount to the equivalent of 731 day−1 of methanol. As the cost of fossil fuel increases, energy cost will become a predominant factor in the selection of small (0.5–5 mgd) wastewater treatment systems. However, in many cases where natural wetlands are either geographically unavailable or protected from wastewater discharge by environmental, legal, or aesthetic restraints, artificial wetlands offer a viable alternative for energy-effective treatment of municipal and agricultural wastewater effluents.  相似文献   

15.
16.
《Water research》1996,30(2):364-370
The involvement of Acinetobacter in biological excess phosphate removal from the activated sludge process is widely accepted, though its role is not yet clearly defined. To better understand why activated sludge systems remove phosphate, different cell concentrations of Acinetobacter junii (104, 105, 106, 107, 108 cells·ml−1 initial biomass) were used as inoculum in a mixed liquor medium containing sodium acetate. The phosphate uptake capacity was dependent on the biomass concentration. Low initial biomass concentrations triggered the release of phosphate once transferred into the mixed liquor. Release of phosphate increased during active growth and uptake occurred when cells reached the stationary growth phase. High initial biomass concentration of Acinetobacter junii (108 cells·ml−1) resulted in uptake of phosphate during the entire duration of the experiment leading eventually to complete phosphate removal.  相似文献   

17.
Lürling M  Faassen EJ 《Water research》2012,46(5):1447-1459
Sediment dredging and Phoslock® addition were applied individually and in combination in an enclosure experiment in a Dutch hypertrophic urban pond. These measures were applied to control eutrophication and reduce the risk of exposure to cyanobacterial toxins. Over the 58 days course of the experiment, cyanobacteria (predominantly Microcystis aeruginosa) gradually decreased until they dropped below the level of detection in the combined treated enclosures, they were reduced in dredged enclosures, but remained flourishing in controls and Phoslock® treated enclosures. Cyanobacteria were, however, less abundant in the enclosures (medians chlorophyll-a 30-87 μg l−1) than in the pond (median chlorophyll-a 162 μg l−1), where also a thick surface scum covered one-third of the pond for many weeks.Soluble reactive phosphorus (SRP), total phosphorus and total nitrogen concentrations were significantly lower in the combined dredged and Phoslock® treated enclosures than in controls. Median SRP concentrations were 24 μg P l−1 in the combined treatment, 58 μg P l−1 in dredged enclosures, and 90 μg P l−1 in controls and 95 μg P l−1 in Phoslock® treated enclosures. Hence, the combined treatment was most effective in decreasing SRP and TP, and in lowering cyanobacterial biomass.Microcystin (MC) concentrations were analyzed by LC-MS/MS. MC concentrations and cyanobacterial biomass were positively correlated in all treatments. Mean MC concentrations in controls (71 μg l−1), Phoslock® treated enclosures (37 μg l−1) and dredged enclosures (25 μg l−1) exceeded the provisional guideline of 20 μg l−1, whereas mean MC concentrations were 13 μg l−1 in the combined treated enclosures. All samples contained the MC variants dmMC-RR, MC-RR, MC-YR, dmMC-LR and MC-LR; traces of MC-LY and nodularin were detected in few samples. The different treatments did not change the relative contribution of the variants to the MC pool; MC profiles in all treatments and the pond showed dominance of MC-RR followed by MC-LR. In the surface scum of the pond, total MC concentration was extremely high (64000 μg l−1 or 1300 μg g−1 DW), which poses a serious health hazard to children playing on the banks of the pond. Based on our results and pond characteristics, we propose combined sediment dredging and Phoslock® addition, fish removal and strong reduction of duck feeding by the neighborhood as most promising measures controlling cyanobacterial hazards in this pond.  相似文献   

18.
In the last two decades, constructed wetland systems gained increasing interest in wastewater treatment and as such have been intensively studied around the world. While most of the studies showed excellent removal of various pollutants, the exact contribution, in kinetic terms, of its particular components (such as: root, gravel and water) combined with bacteria is almost nonexistent.In the present study, a phenol degrader bacterium identified as Pseudomonas pseudoalcaligenes was isolated from a constructed wetland, and used in an experimental set-up containing: plants and gravel. Phenol removal rate by planktonic and biofilm bacteria (on sterile Zea mays roots and gravel surfaces) was studied. Specific phenol removal rates revealed significant advantage of planktonic cells (1.04 × 10−9 mg phenol/CFU/h) compared to root and gravel biofilms: 4.59 × 10−11-2.04 × 10−10 and 8.04 × 10−11-4.39 × 10−10 (mg phenol/CFU/h), respectively.In batch cultures, phenol biodegradation kinetic parameters were determined by biomass growth rates and phenol removal as a function of time. Based on Haldane equation, kinetic constants such as μmax = 1.15/h, Ks = 35.4 mg/L and Ki = 198.6 mg/L fit well phenol removal by P. pseudoalcaligenes.Although P. pseudoalcaligenes planktonic cells showed the highest phenol removal rate, in constructed wetland systems and especially in those with sub-surface flow, it is expected that surface associated microorganisms (biofilms) will provide a much higher contribution in phenol and other organics removal, due to greater bacterial biomass.Factors affecting the performance of planktonic vs. biofilm bacteria in sub-surface flow constructed wetlands are further discussed.  相似文献   

19.
Prestel H  Schott L  Niessner R  Panne U 《Water research》2005,39(15):3541-3552
Asymmetrical flow field-flow fractionation (AF4) was applied to characterize aquatic colloids from biological sewage plants and to infer information of colloidal loads, sources, and sinks within the plants, resp. the colloidal interaction with the aqueous phase and the sewage sludge. To characterize the colloids further, especially the distributions of colloid associated heavy metals, the AF4 system was coupled to an inductively coupled plasma mass spectrometer (ICP-MS). The size distribution is determined by AF4 with UV absorbance and fluorescence detection after a calibration by monodisperse polystyrene sulfonate standards (PSS). Samples from different sewage plants and from different depths and locations within a plant were compared. The fulvic/humic acid fraction with a particle diameter dp<10 nm appeared to be comparable in all samples and decreases only slightly along the plants, whereas larger colloids with dp>10 nm almost completely passed into the sewage sludge. The concentrations of the initial colloidal heavy metals decreased along the plants.  相似文献   

20.
Algal growth in primary settled sewage: The effects of five key variables   总被引:1,自引:0,他引:1  
Photoperiod, at 3240 lx (300 ft candle) light intensity, was found to be the primary limiting factor for algal biomass growth in a bench scale series of experiments using primary settled sewage. At a retention time of seven days, a total effective photoperiod of greater than 6 h a day was required to produce algae at concentration above 500 mg 1−1.Increasing dissolved CO2 concentration promoted green algae production and resulted in a higher yield than that obtained from the blue green algae which dominated at low levels of dissolved CO2. Unfortunately, most of the green algae were unicellular, discrete, small particles, and would be expensive to harvest compared with blue-green algae which often grow in colonies possessing a gelatinous sheath or are of filamentous construction.Low temperature favoured algal biomass production because of its effect upon the solubility of CO2. The addition of bicarbonate also increased algal biomass yield but an excess of ammonium nitrate inhibited algal production.The removal of nitrogen and phosphorus by algae varied with the quantity of algal biomass produced. Under the experimental conditions, nitrogen removal corresponded to about 3 mg per 100 mg of biomass produced and phosphorus removal to about 0.5 mg per 100 mg biomass produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号