首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron amendment and Fenton oxidation of MTBE-spent granular activated carbon   总被引:1,自引:0,他引:1  
Fenton-driven regeneration of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves an Fe amendment step to increase the Fe content and to enhance the extent of MTBE oxidation and GAC regeneration. Four forms of iron (ferric sulfate, ferric chloride, ferric nitrate, ferrous sulfate) were amended separately to GAC. Following Fe amendment, MTBE was adsorbed to the GAC followed by multiple applications of H2O2. Fe retention in GAC was high (83.8-99.9%) and decreased in the following order, FeSO4·7H2O > Fe2(SO4)3·9H2O > Fe(NO3)3·9H2O > FeCl3. A correlation was established between the post-sorption aqueous MTBE concentrations and Fe on the GAC for all forms of Fe investigated indicating that Fe amendment interfered with MTBE adsorption. However, the mass of MTBE adsorbed to the GAC was minimally affected by Fe loading. Relative to ferric iron amendments to GAC, ferrous iron amendment resulted in lower residual iron in solution, greater Fe immobilization in the GAC, and less interference with MTBE adsorption. MTBE oxidation was Fe limited and no clear trend was established between the counter-ion (SO42−, Cl, NO3) of the ferric Fe amended to GAC and H2O2 reaction, MTBE adsorption, or MTBE oxidation, suggesting these processes are anion independent.  相似文献   

2.
Several laboratory tests were conducted to examine Fe(II) as an enhancing agent in the dehalogenation of CHC13 in batch mode. The CHC13 degradation was found to be negligible when only Fe(II) is present as a reductant in the (aqueous) reaction system. However, in the presence of Fe(II) coated goethite, the rate of CHC13 degradation was enhanced to some extent. This observation can be explained by considering a surface mediated electron transfer step in the overall process. Substantial increase of the degradation rate was observed when the goethite particles first coated with fulvic acid were employed in the adsorption of Fe(II) for the degradation of CHC13.  相似文献   

3.
Zhou T  Lim TT  Wu X 《Water research》2011,45(9):2915-2924
The sonophotolytic advance oxidation system (US/UV/Fe3+) could achieve synergistic degradation of reactive black 5 (RB5), as compared to UV/Fe3+ and US/Fe3+ systems. A synergy factor of 2.5 based on the pseudo-first-order degradation rate constant (kobs) was found, along with enhancements in organic detoxification and mineralization. The presence of organic ligands could affect the US/UV/Fe3+ system differently. Oxalate, citrate, tartrate and succinate could enhance the RB5 degradation, while NTA and EDTA exhibited strong inhibitions. The influence of these ligands on kobs(RB5) in the US/UV/Fe(III)-ligand systems followed the sequence of oxalate > tartrate > succinate > citrate > without ligand > NTA > EDTA, while they could be degraded simultaneously with the kobs(ligand) order of oxalate > citrate > tartrate > succinate > NTA > EDTA. Monitoring of iron species and the generated H2O2 and •OH revealed that the ligands in the US/UV/Fe(III)-ligand system could play different mechanistic roles: (1) promoting H2O2 production, (2) accelerating Fenton reaction, and (3) competing with RB5 for reacting with •OH. Among the ligands, oxalate exhibited the most significant enhancement of RB5 oxidation in the sonophotolytic system, and the process was pH-dependent. An initial reaction lag in RB5 degradation was observed when Fe2+ was used in lieu of Fe3+ as the catalyst in the sonophotolytic system.  相似文献   

4.
The typical antibiotic Oxytetracycline (OTC) remained in the environment and it was widely used. And the migration and transformation of OTC in natural environment and its harmfulness had become the focus of attention. Thus, the influence of Fe(II/III)‐OTC complex on degradation of OTC by Fe(II)/H2O2 under simulated solar light was investigated. The results showed that the average ratio of OTC‐Fe(II/III) complexes formed by OTC and Fe(III) was 1:1 at pH = 2.5. In addition, it was difficult to obtain the stability constant of Fe(III)‐OTC complexes effectively considering the morphology of Fe(III) and the complexation sites of OTC. And when OTC:Fe(II):H2O2 = 1:1.5:2, the removal rate of OTC was 82% after 1 h, however, simulated solar light could not improve the degradation of OTC effectively. Furthermore, the existence of OTC‐Fe(II/III) complex led to the slow degradation stage of OTC degradation by Fe(II)/H2O2. It could be concluded that the Fe(III)‐OTC complex might prolong the retention time of OTC in the environment.  相似文献   

5.
Continuous flow stirred reactors were used to evaluate the maximum denitrification specific removal rates for influent solutions made from NH4NO3, CaNO3, KNO3 and UO2 fuel fabrication waste water. Nitrate substrate concentrations ranged from 0.01 to 20 kg NO3/m3. Values for Umax (maximum specific substrate removal rate per unit mass of microorganisms per unit time, days−1) were determined using graphical solutions to the Lineweaver-Burk equations. For NH4NO3 solutions at nitrate substrate concentrations <6 kg NO3/m3 the value for Umax was found to be 1.73 days−1. At nitrate substrate concentrations >6 kg NO3/m3 a nonlinear relationship was observed in the Lineweaver-Burk plots indicating nitrate substrate inhibition. Specific removal rates at nitrate concentrations >6 kg NO3/m3 averaged <1.0 days−1. Ammonia toxicity may also have occurred as the pH of the mixed liquor was near 8. Methanol concentrations as high as 11.6 kg CH3OH/m3 did not inhibit denitrification rates. The highest specific removal rates recorded (3.13 ± 0.56 days−1) were with influents made from UO2 fuel fabrication waste water.  相似文献   

6.
《Water research》1998,32(3):831-839
The effect of pH variation, within the range 6.5, 7.0, 7.5, 8.5 and 9, on activated sludge denitrification of a synthetic wastewater containing 2700 mg/l NO3-N was examined using bench-scale Sequencing Batch Reactors. Two major effects were observed. One, at pH values of 6.5 and 7.0, denitrification of a synthetic wastewater containing high nitrate levels was significantly inhibited. Two, denitrification was achieved at higher pH values of 7.5, 8.5 and 9.0, but the accumulation of nitrite increased significantly as mixed liquor pH increased with peak values of 250, 500 and 900 mg/l NO2-N, respectively. As the pH rose, the specific rate of nitrate reduction increased. At the same time the specific rate of nitrite reduction increased in the absence of nitrate. In the presence of nitrate the specific rate of nitrite reduction remained constant, and the degree to which nitrite reduction increased in the absence of nitrate was a function of increasing pH. While increasing pH from 7.5 to 9.0 affected nitrite intermediate accumulation, the overall time for complete denitrification (reduction of both NO3 and NO2) was similar for the pH values of 7.5, 8.5 and 9.  相似文献   

7.
The enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils by micro-nano size TiO2 in the presence and absence of sunlight was investigated. The results showed that the synergistic effect of sunlight irradiation and TiO2 was more efficient on pyrene degradation in quartz sand and red and alluvial soils than the corresponding reaction system without sunlight irradiation. In the presence of sunlight irradiation, the photooxidation (without TiO2) of pyrene was very pronounced in alluvial and red soils and especially in quartz sand. However, in the absence of sunlight irradiation, the catalytic pyrene degradation by TiO2 and the photooxidation (without TiO2) of pyrene were almost nil. This implicates that ultra-violet (UV) wavelength range of sunlight plays an important role in TiO2-enhanced photocatalytic pyrene degradation and in photooxidation (without TiO2) of pyrene. The percentages of photocatalytic pyrene degradation by TiO2 in quartz sand, alluvial and red soils under sunlight irradiation were 78.3, 23.4, and 31.8%, respectively, at 5 h reaction period with a 5% (w/w) dose of the amended catalyst. The sequence of TiO2-enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils was quartz sand > red soil > alluvial soil, due to different texture and total organic carbon (TOC) contents of the quartz sand and other two soils. The differential Fourier transform infrared (FT-IR) spectra of degraded pyrene in alluvial soil corroborate that TiO2-enhanced photocatalytic degradation rate of degraded pyrene was much greater than photooxidation (without TiO2) rate of degraded pyrene. Based on the data obtained, the importance for the application of TiO2-enhanced photocatalytic pyrene degradation and associated organic contaminants in contaminated soils was elucidated.  相似文献   

8.
This study examines the feasibility and application of Advanced Oxidation Technologies (AOTs) for the treatment of chlorophenols that are included in US EPA priority pollutant list. A novel class of sulfate/hydroxyl radical-based homogeneous AOTs (Fe(II)/PS, Fe(II)/PMS, Fe(II)/H2O2) was successfully tested for the degradation of series of chlorophenols (4-CP, 2,4-CP, 2,4,6-CP, 2,3,4,5-CP). The major objective of the present study was to evaluate the effectiveness of three representative chelating agents (citrate, ethylenediaminedisuccinate (EDDS), and pyrophosphate) on Fe(II)-mediated activation of three common peroxide (peroxymonosulfate (PMS), persulfate (PS), and hydrogen peroxide (H2O2)) at neutral pH conditions. Short term (4 h) and long term (7 days) experiments were conducted to evaluate the kinetics and longevity of different oxidative systems for 4-chlorophenol degradation. Results showed that each of the iron-chelating agent couple was superior in activating a particular oxidant and consequently for 4-CP degradation. In case of Fe(II)/PMS system, the inorganic chelating agent pyrophosphate showed effective activation of PMS whereas very fast dissociation of PMS was recorded in the case of EDDS without any apparent 4-CP degradation. In Fe(II)/H2O2 system, EDDS was proven to be the most effective whereas pyrophosphate showed negligible activation of H2O2. Fe(II)/Citrate system showed moderate activation of all three oxidants. PMS was found to be the most universal oxidant, which was activated by all three iron-chelating agent systems and Fe(II)/Citrate was the most universal chelating agent system, which was able to activate all three oxidants to a certain extent.  相似文献   

9.
A novel KMnO4–Fe(II) process was developed in this study for As(III) removal. The optimum As(III) removal was achieved at a permanganate dosage of 18.6 μM. At the optimum dosage of permanganate, the KMnO4–Fe(II) process was much more efficient than the KMnO4–Fe(III) process for As(III) removal by 15–38% at pH 5–9. The great difference in As(III) removal in these two processes was not ascribed to the uptake of arsenic by the MnO2 formed in situ but to the different properties of conventional Fe(III) and the Fe(III) formed in situ. It was found that the presence of Ca2+ had limited effects on As(III) removal under acidic conditions but resulted in a significant increase in As(III) removal under neutral and alkaline conditions in the KMnO4–Fe(II) process. Moreover, the effects of Ca2+ on As(III) removal in the KMnO4–Fe(II) process were greater at lower permanganate dosage when Fe(II) was not completely oxidized by permanganate. This study revealed that the improvement of As(III) removal at pH 7–9 in the KMnO4–Fe(II) process by Ca2+ was associated with three reasons: (1) the specific adsorption of Ca2+ increased the surface charge; (2) the formation of amorphous calcium carbonate and calcite precipitate that could co-precipitate arsenate; (3) the introduction of calcium resulted in more precipitated ferrous hydroxide or ferric hydroxide. On the other hand, the enhancement of arsenic removal by Ca2+ under acidic conditions was ascribed to the increase of Fe retained in the precipitate. FTIR tests demonstrated that As(III) was removed as arsenate by forming monodentate complex with Fe(III) formed in situ in the KMnO4–Fe(II) process when KMnO4 was applied at 18.6 μM. The strength of the “non-surface complexed” As–O bonds of the precipitated arsenate species was enhanced by the presence of Ca2+ and the complexation reactions of arsenate with Fe(III) formed in situ in the presence or absence of Ca2+ were proposed.  相似文献   

10.
K.H. Chan 《Water research》2009,43(9):2513-128
The degradation of atrazine (ATZ) by cobalt-mediated activation of peroxymonosulfate (PMS) has been studied in this work. For the homogenous process, different cobalt counteranions: cobalt(II) nitrate Co(NO3)2, cobalt(II) sulfate CoSO4, cobalt(II) chloride CoCl2, and cobalt(II) acetate Co(CH3COO)2, have been examined. The inhibitory effect was observed in the process initiated by CoCl2. For the pH test, wide range of pH level (2-10) has been investigated. It was found that the higher rates were obtained in the normal pH levels. At extreme pH levels, the process was impeded by inactivation of PMS at acidic pH and prohibited by precipitation at basic pH. On the other hand, the recycling capability of cobalt oxide and the oxidative potential of cobalt-immobilized titanium dioxide Co-TiO2 catalyst were analyzed in the heterogeneous process. It was found that the higher the cobalt content in the catalyst, the better the removal performance was resulted. At last, the Co-TiO2 catalyst synthesized in this work was found to be very effective in transforming ATZ as well as its intermediate in the presence of UV-vis irradiation.  相似文献   

11.
ABSTRACT

This work investigates the effect of adding Cerium oxide nanoparticles at different proportions (30, 60 and 90?ppm) to Calophyllum inophyllum methyl ester and diesel blends (20% CI methyl ester and 80% diesel) in a four-stroke single-cylinder diesel engine. Addition of nanoparticles is a strategy to reduce emission and to improve the performance of the biodiesel. Modified fuels are introduced into the engine by admitting exhaust gas recirculation (EGR) at a rate of 10% and 20% so as to reduce nitrogen oxide (NOX) emissions from biodiesel and diesel blends. Results revealed a significant reduction in emissions (CO, NOX, HC and Smoke) at a 10% EGR rate. However, brake thermal efficiency is reduced with an increase in brake-specific fuel consumption at higher EGR rates. Hence, it is observed that 10% EGR rate is an effective method to control the emission of biodiesel and diesel blends without compromising much on engine efficiency.  相似文献   

12.
Oxalic and oxamic acids are the ultimate and more persistent by-products of the degradation of N-aromatics by electrochemical advanced oxidation processes (EAOPs). In this paper, the kinetics and oxidative paths of these acids have been studied for several EAOPs using a boron-doped diamond (BDD) anode and a stainless steel or an air-diffusion cathode. Anodic oxidation (AO-BDD) in the presence of Fe2+ (AO-BDD-Fe2+) and under UVA irradiation (AO-BDD-Fe2+-UVA), along with electro-Fenton (EF-BDD), was tested. The oxidation of both acids and their iron complexes on BDD was clarified by cyclic voltammetry. AO-BDD allowed the overall mineralization of oxalic acid, but oxamic acid was removed much more slowly. Each acid underwent a similar decay in AO-BDD-Fe2+ and EF-BDD, as expected if its iron complexes were not attacked by hydroxyl radicals in the bulk. The faster and total mineralization of both acids was achieved in AO-BDD-Fe2+-UVA due to the high photoactivity of their Fe(III) complexes that were continuously regenerated by oxidation of their Fe(II) complexes. Oxamic acid always released a larger proportion of NH4+ than NO3 ion, as well as volatile NOx species. Both acids were independently oxidized at the anode in AO-BDD, but in AO-BDD-Fe2+-UVA oxamic acid was more slowly degraded as its content decreased, without significant effect on oxalic acid decay. The increase in current density enhanced the oxidation power of the latter method, with loss of efficiency. High Fe2+ contents inhibited the oxidation of Fe(II) complexes by the competitive oxidation of Fe2+ to Fe3+. Low current densities and Fe2+ contents are preferable to remove more efficiently these acids by the most potent AO-BDD-Fe2+-UVA method.  相似文献   

13.
In a previous laboratory experiment, extracts of neem (Azadirachta indica A. Juss.) and Gliricidia sepium Jacquin, locally known as mata-raton, used to control pests on crops, inhibited emissions of CO2 from a urea-amended soil, but not nitrification and N2O emissions. We investigated if these extracts when applied to beans (Phaseolus vulgaris L.) affected their development, soil characteristics and emissions of carbon dioxide (CO2) and nitrous oxide (N2O) in a greenhouse environment. Untreated beans and beans planted with lambda-cyhalothrin, a commercial insecticide, served as controls. After 117 days, shoots of plants cultivated in soil amended with urea or treated with lambda-cyhalothrin, or extracts of neem or G. sepium were significantly higher than when cultivated in the unamended soil, while the roots were significantly longer when plants were amended with urea or treated with leaf extracts of neem or G. sepium than when treated with lambda-cyhalothrin. The number of pods, fresh and dry pod weight and seed yield was significantly higher when bean plants were treated with leaf extracts of neem or G. sepium treatments than when left untreated and unfertilized. The number of seeds was similar for the different treatments. The number of nodules was lower in plants fertilized with urea, treated with leaf extracts of neem or G. sepium, or with lambda-cyhalothrin compared to the unfertilized plants. The concentrations of NH4+, NO2 and NO3 decreased significantly over time with the lowest concentrations generally found at harvest. Treatment had no significant effect on the concentrations of NH4+ and NO2, but the concentration of NO3 was significantly lower in the unfertilized soil compared to the other treatments. It was found that applying extracts of neem or G. sepium leaves to beans favored their development when compared to untreated plants, but had no significant effect on nitrification in soil.  相似文献   

14.
Nitrate (NO3) contamination of surface- and groundwater is an environmental problem in many regions of the world with intensive agriculture and high population densities. Knowledge of the sources of NO3 contamination in water is important for better management of water quality. Stable nitrogen (δ15N) and oxygen (δ18O) isotope data of NO3 have been frequently used to identify NO3 sources in water. This review summarizes typical δ15N- and δ18O-NO3 ranges of known NO3 sources, interprets constraints and future outlooks to quantify NO3 sources, and describes three analytical techniques (“ion-exchange method”, “bacterial denitrification method”, and “cadmium reduction method”) for δ15N- and δ18O-NO3 determination. Isotopic data can provide evidence for the presence of dominant NO3 sources. However, quantification, including uncertainty assessment, is lacking when multiple NO3 sources are present. Moreover, fractionation processes are often ignored, but may largely constrain the accuracy of NO3 source identification. These problems can be overcome if (1) NO3 isotopic data are combined with co-migrating discriminators of NO3 sources (e.g. 11B), which are not affected by transformation processes, (2) contributions of different NO3 sources can be quantified via linear mixing models (e.g. SIAR), and (3) precise, accurate and high throughput isotope analytical techniques become available.  相似文献   

15.
The photo-Fenton degradation of paracetamol (PCT) was evaluated using FeSO4 and the iron complex potassium ferrioxalate (FeOx) as iron source under simulated solar light. The efficiency of the degradation process was evaluated considering the decay of PCT and total organic carbon concentration and the generation of carboxylic acids, ammonium and nitrate, expressed as total nitrogen. The results showed that the degradation was favored in the presence of FeSO4 in relation to FeOx. The higher concentration of hydroxylated intermediates generated in the presence of FeSO4 in relation to FeOx probably enhanced the reduction of Fe(III) to Fe(II) improving the degradation efficiency. The degradation products were determined using liquid chromatography electrospray time-of-flight mass spectrometry. Although at different concentrations, the same intermediates were generated using either FeSO4 or FeOx, which were mainly products of hydroxylation reactions and acetamide. The toxicity of the sample for Vibrio fischeri and Daphnia magna decreased from 100% to less than 40% during photo-Fenton treatment in the presence of both iron species, except for D. magna in the presence of FeOx due to the toxicity of oxalate to this organism. The considerable decrease of the sample toxicity during photo-Fenton treatment using FeSO4 indicates a safe application of the process for the removal of this pharmaceutical.  相似文献   

16.
Ultrafiltration of water from eutrophic, alkaline and humic lake Tjeukemeer, The Netherlands, revealed that most dissolved Fe (< 0.2 μm) is found in colloids between 350 and 2000 Å. All dissolved Fe from NH4Fe(SO4)2·12H2O in the growth medium occurred in particles < 350 A?, half of which did not exceed 100 Å. The half-saturation growth constant (Ks) of Fe-limited growth of Scenedesmus quadricauda in the presence of EDTA at pH 8.0 and using the natural Fe colloids was almost 3 times that using NH4Fe(SO4)2·12H2O. The maximum growth rate (μmax) was not affected by the particle size of the limiting Fe substrate. It is concluded that Fe from the natural colloids is approx. one-third as much available as from NH4Fe(SO4)2·12H2O.The implications of the effect of the particle size of the growth rate limiting substrate to our understanding of species succession in natural phytoplankton communities are briefly discussed.  相似文献   

17.
Denitrification beds are containers filled with wood by-products that serve as a carbon and energy source to denitrifiers, which reduce nitrate (NO3) from point source discharges into non-reactive dinitrogen (N2) gas. This study investigates a range of alternative carbon sources and determines rates, mechanisms and factors controlling NO3 removal, denitrifying bacterial community, and the adverse effects of these substrates. Experimental barrels (0.2 m3) filled with either maize cobs, wheat straw, green waste, sawdust, pine woodchips or eucalyptus woodchips were incubated at 16.8 °C or 27.1 °C (outlet temperature), and received NO3 enriched water (14.38 mg N L−1 and 17.15 mg N L−1). After 2.5 years of incubation measurements were made of NO3-N removal rates, in vitro denitrification rates (DR), factors limiting denitrification (carbon and nitrate availability, dissolved oxygen, temperature, pH, and concentrations of NO3, nitrite and ammonia), copy number of nitrite reductase (nirS and nirK) and nitrous oxide reductase (nosZ) genes, and greenhouse gas production (dissolved nitrous oxide (N2O) and methane), and carbon (TOC) loss. Microbial denitrification was the main mechanism for NO3-N removal. Nitrate-N removal rates ranged from 1.3 (pine woodchips) to 6.2 g N m−3 d−1 (maize cobs), and were predominantly limited by C availability and temperature (Q10 = 1.2) when NO3-N outlet concentrations remained above 1 mg L−1. The NO3-N removal rate did not depend directly on substrate type, but on the quantity of microbially available carbon, which differed between carbon sources. The abundance of denitrifying genes (nirS, nirK and nosZ) was similar in replicate barrels under cold incubation, but varied substantially under warm incubation, and between substrates. Warm incubation enhanced growth of nirS containing bacteria and bacteria that lacked the nosZ gene, potentially explaining the greater N2O emission in warmer environments. Maize cob substrate had the highest NO3-N removal rate, but adverse effects include TOC release, dissolved N2O release and substantial carbon consumption by non-denitrifiers. Woodchips removed less than half of NO3 removed by maize cobs, but provided ideal conditions for denitrifying bacteria, and adverse effects were not observed. Therefore we recommend the combination of maize cobs and woodchips to enhance NO3 removal while minimizing adverse effects in denitrification beds.  相似文献   

18.
Accumulation of combustible biomass residues on hot surfaces of processing machineries can pose fire hazards. In addition, the presence of nitrogen oxides (NOx) from plant equipment alters the local conditions, aggravating the propensity for low temperature ignition risks. This study presents an experimental study on a relative effect of NOx on ignition temperature of morpholine, an important surrogate of biomass, to reveal the sensitising role of NOx in ignition of biomass fuels and to gain mechanistic insights into the chemical aspect of this behaviour in fire. The experiments employed a flow-through tubular reactor, operated at constant pressure and residence time of 1.01 bar and 1.0 s, respectively, and coupled with a Fourier-transform infrared spectroscope. For a representative fuel-rich condition (Φ=1.25), the concentration of NOx as small as 0.06% lowers the ignition temperature of morpholine by 150 °C, i.e., from approximately 500 °C to 350 °C. The density functional theory (DFT) calculations performed with the CBS-QB3 composite method, that comprises a complete basis set, characterised the dynamics and energies of the elementary nitration reactions. We related the observed reduction in ignition temperature to the formation of unstable nitrite and nitrate adducts, as the result of addition of NOx species to morphyl and peroxyl radicals. Furthermore, the reaction of NOx with low-temperature hydroperoxyl radical leads to the formation of active OH species that also propagate the ignition process. The present findings quantify the ignition behaviour of biomass under NOx–doped atmospheres. The result is of great importance in practical applications, indicating that safe operation of wood-working plants requires avoiding trace concentration of NOx within the vicinity of biomass residues. This can be facilitated by proper (and separate) venting of engine exhausts.  相似文献   

19.
Fe(II)/Fe(III) oxide is an important redox couple in environmental systems. Recent studies have revealed unique characteristics of Fe(II)/Fe(III) oxide and reactions with oxidizing or reducing agents. Nitrite was used as an oxidizing agent in this study in order to probe details of these reactions and hydrous ferric oxide (HFO) was used as the Fe(III) oxide phase. Abiotic nitrite reduction is a significant global producer of nitric oxide (a catalyst for production of tropospheric ozone) and nitrous oxide (a greenhouse gas and contributor to stratospheric ozone depletion). All experiments were conducted at pH 6.8 using a strictly anoxic environment with mass-balance measurements for Fe(II). Oxidation of Fe(II) was negligible in the absence of HFO. The reaction was fast in the presence of HFO and was described by d[Fe(II)]/dt = −koverall [Fe(II)diss] [Fe(II)solid-bound] [NO2] (koverall = 2.59 × 10−7 μM−2 min−1) for Fe(II)/Fe(III) molar ratios less than 0.30. The reaction was inhibited for higher Fe(II)/HFO ratios. The concentration of solid-bound Fe(II) was constant after an initial equilibration period and the reaction stopped when dissolved Fe(II) was depleted even though substantial solid-bound Fe(II) and nitrite remained. The results regarding rate-dependence and conservation of solid-bound Fe(II) and inhibition of reaction at high Fe(II)/Fe(III) ratios were similar to our earlier results for the Fe(II)/HFO/O2 system [Park, B., Dempsey, B.A., 2005. Heterogeneous oxidation of Fe(II) on ferric oxide at neutral pH and a low partial pressure of O2. Environmental Science and Technology 39(17), 6494-6500.].  相似文献   

20.
To assess the atmospheric environmental impacts of anthropogenic reactive nitrogen in the fast-developing Eastern China region, we measured atmospheric concentrations of nitrogen dioxide (NO2) and ammonia (NH3) as well as the wet deposition of inorganic nitrogen (NO3 and NH4+) and dissolved organic nitrogen (DON) levels in a typical agricultural catchment in Jiangsu Province, China, from October 2007 to September 2008. The annual average gaseous concentrations of NO2 and NH3 were 42.2 μg m3 and 4.5 μg m3 (0 °C, 760 mm Hg), respectively, whereas those of NO3, NH4+, and DON in the rainwater within the study catchment were 1.3, 1.3, and 0.5 mg N L1, respectively. No clear difference in gaseous NO2 concentrations and nitrogen concentrations in collected rainwater was found between the crop field and residential sites, but the average NH3 concentration of 5.4 μg m3 in residential sites was significantly higher than that in field sites (4.1 μg m3). Total depositions were 40 kg N ha1 yr1 for crop field sites and 30 kg N ha1 yr1 for residential sites, in which dry depositions (NO2 and NH3) were 7.6 kg N ha1 yr1 for crop field sites and 1.9 kg N ha1 yr1 for residential sites. The DON in the rainwater accounted for 16% of the total wet nitrogen deposition. Oxidized N (NO3 in the precipitation and gaseous NO2) was the dominant form of nitrogen deposition in the studied region, indicating that reactive forms of nitrogen created from urban areas contribute greatly to N deposition in the rural area evaluated in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号