首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The occurrence and fate of four estrogens and five alkylphenolic compounds were studied in thirteen plants with various treatment processes, sizes and countries. Complete load mass balance, including water and sludge phases, has shown a high reduction of the total load of hormones, around 90%. The removal of alkylphenols was more variable, due to the degradation of nonylphenol (NP) precursors - alkylphenol polyethoxylates (APnEO) - during the treatment, resulting in significant production of shorter and toxic alkylphenols (NP and short polyethoxylates) that concentrate in the sludges. Under anaerobic conditions, such as anaerobic digestion process, the load of NP was in most cases observed to increase. When considering the environmental impact, the high reduction of endocrine disrupting compounds (EDC) concentrations between raw wastewater and effluent enables to satisfy the requirements of the Water Framework Directive for NP except in very critical situations where the dilution factor of the effluent in the river would be lower than 7. For sludges, the pending European Directive on spreading of sludge on land would be complied with in all cases.  相似文献   

2.
Water resource management should be made from a multidisciplinary perspective. In this sense, economic research into the design and implementation of policies for the efficient management of water resources has been emphasized by the European Water Framework Directive (WFD). Cost-benefit analysis (CBA) is one of the more widely accepted economic instruments since it is a rational and systematic decision-making support tool. Moreover, the wastewater treatment process has significant associated environmental benefits. However, these benefits are often left uncalculated because they have no market value. In this paper, using the concept of shadow price, a quantification of the environmental benefits derived from wastewater treatment is made. Once the environmental benefits are estimated and the economic costs of the treatment processes are known, a CBA is made for each of the wastewater treatment plants (WWTPs) under study. In this way, a useful economic feasibility indicator is obtained for WWTP operation.  相似文献   

3.
This paper presents results about the occurrence, the concentrations of urban priority substances on both the dissolved and the particulate phases in stormwater. Samples were collected at the outlet of a dense urban catchment in Paris suburb (2.30 km2). 13 chemical groups were investigated including 88 individual substances. Results showed that stormwater discharges contained 45 substances among them some metals, organotins, PAHs, PCBs, alkylphenols, pesticides, phthalates, cholorophenols and one volatile organic compound, i.e. methylene chloride. With respect to the European Water Framework Directive, these substances included 47% of the priority hazardous substances (n = 8), 38% of the priority substances (n = 10). The remaining substances (n = 27) belong to a list of others specific urban substances not included in the Water Framework Directive but monitored during this work. Finally, stormwater quality was evaluated by comparing the substance concentrations to environmental quality standards (EQS) and the particulate content to Canadian sediment quality guidelines. This showed that stormwater was highly contaminated and should be treated before being discharged to receiving waters in order to avoid any adverse impact on the river quality.  相似文献   

4.
Occurrence and removal of N-nitrosamines in wastewater treatment plants   总被引:1,自引:0,他引:1  
The presence of nitrosamines in wastewater might pose a risk to water resources even in countries where chlorination or chloramination are hardly used for water disinfection. We studied the variation of concentrations and removal efficiencies of eight N-nitrosamines among 21 full-scale sewage treatment plants (STPs) in Switzerland and temporal variations at one of these plants. N-nitrosodimethylamine (NDMA) was the predominant compound in STP primary effluents with median concentrations in the range of 5-20 ng/L, but peak concentrations up to 1 μg/L. N-nitrosomorpholine (NMOR) was abundant in all plants at concentrations of 5-30 ng/L, other nitrosamines occurred at a lower number of plants at similar levels. From concentrations in urine samples and domestic wastewater we estimated that human excretion accounted for levels of <5 ng/L of NDMA and <1 ng/L of the other nitrosamines in municipal wastewater, additional domestic sources for <5 ng/L of NMOR. Levels above this domestic background are probably caused by industrial or commercial discharges, which results in highly variable concentrations in sewage. Aqueous removal efficiencies in activated sludge treatment were in general above 40% for NMOR and above 60% for the other nitrosamines, but could be lower if concentrations were below 8-15 ng/L in primary effluent. We hypothesize that substrate competition in the cometabolic degradation explains the occurrence of such threshold concentrations. An additional sand filtration step resulted in a further removal of nitrosamines from secondary effluents even at low concentrations. Concentrations released to surface waters were largely below 10 ng/L, suggesting a low impact on Swiss water resources and drinking water generation considering the generally high environmental dilution and possible degradation. However, local impacts in case a larger fraction of wastewater is present cannot be ruled out.  相似文献   

5.
Economic research into the design and implementation of policies for the efficient management of water resources has been emphasized by the European Water Framework Directive (Directive 2000/60/EC). The efficient implementation of policies to prevent the degradation and depletion of water resources requires determining their value in social and economic terms and incorporating this information into the decision-making process. A process of wastewater treatment has many associated environmental benefits. However, these benefits are often not calculated because they are not set by the market, due to inadequate property rights, the presence of externalities, and the lack of perfect information. Nevertheless, the valuation of these benefits is necessary to justify a suitable investment policy and a limited number of studies exist on the subject of the economic valuation of environmental benefits. In this paper, we propose a methodology based on the estimation of shadow prices for the pollutants removed in a treatment process. This value represents the environmental benefit (avoided cost) associated with undischarged pollution. This is a pioneering approach to the economic valuation of wastewater treatment. The comparison of these benefits with the internal costs of the treatment process will provide a useful indicator for the feasibility of wastewater treatment projects.  相似文献   

6.
A wide range of household sources may potentially contribute to contaminant loads in domestic greywater. The ability of greywater treatment systems to act as emission control barriers for household micropollutants, thereby providing environmental benefits in addition to potable water savings, have not been fully explored. This paper investigates the sources, presence and potential fate of a selection of xenobiotic micropollutants in on-site greywater treatment systems. All of the investigated compounds are listed under the European Water Framework Directive as either “Priority Substances” (PS) or “Priority Hazardous Substances” (PHS). Significant knowledge gaps are identified. A wide range of potential treatment trains are available for greywater treatment and reuse but treatment efficiency data for priority substances and other micropollutants is very limited. Geochemical modelling indicates that PS/PHS removal during treatment is likely to be predominantly due to sludge/solid phase adsorption, with only minor contributions to the water phase. Many PS/PHS are resistant to biodegradation and as the majority of automated greywater treatment plants periodically discharge sludge to the municipal sewerage system, greywater treatment is unlikely to act as a comprehensive PS/PHS emission barrier. Hence, it is important to ensure that other source control options (e.g. eco-labeling, substance substitution, and regulatory controls) for household items continue to be pursued, in order that PS/PHS emissions from these sources are effectively reduced and/or phased out as required under the demands of the European Water Framework Directive.  相似文献   

7.
In the context of the EU Water Framework Directive, a cost-effectiveness analysis (CEA) was performed to compare centralized and decentralized wastewater treatment strategies aimed to improve the ecological status of a Spanish river. The implementation of several hybrid membrane bioreactors within the urban framework for sewer mining (SM) was compared with the more common wastewater treatment plant enlargement option. The assessment ranked six alternatives based on 12 potential scenarios, aimed at narrowing the uncertainty of the CEA. The cost analysis illustrated that SM is the most expensive option in regard to both investment and operation and maintenance costs. However, the effectiveness of the alternatives evaluated depends significantly on the scenarios considered, with SM the most effective in most cases. Finally, the cost-effectiveness ratio showed SM as the best cost-effective alternative. CEA provides an ecological-economic indicator useful to prioritize wastewater treatment alternatives to achieve a given objective.  相似文献   

8.
Human-specific fecal bacteria in wastewater treatment plant effluents   总被引:1,自引:0,他引:1  
The objective of this study was to identify fecal bacteria able to persist after wastewater treatment and that could be used as indicators of human fecal contamination. In a first step, the diversity of Bacteroidales, Clostridiaceae, Bifidobacterium, and Bacillus-Streptococcus-Lactobacillus cluster (BSL) was analysed using a fingerprint technique (CE-SSCP) and 16S rDNA libraries in waters collected at the end of the treatment process in different urban wastewater treatment plants. For each group, dominant bacteria present in most effluents were identified. Their origin (human feces, animal feces, non-fecal) was then analysed based on data of their closest relatives in public 16S rDNA databases. Among fecal bacteria recovered in the treated effluents analysed, phylotypes close to Bifidobacterium adolescentis and Bacteroides caccae seem to be specific to human beings. Phylotypes gathering only sequences of human fecal origin were also identified among the BSL and Clostridiaceae, two bacterial groups which have been poorly investigated for bacterial source-tracking purpose. Since these bacteria were detected post-treatment in most wastewater treatment plants, they may constitute potential new indicators of fecal contamination specific to humans that could be used to track fecal contamination of surface water by sewage.  相似文献   

9.
The Water Framework Directive and its daughter directives recognize the urgent need to adopt specific measures against the contamination of water by individual pollutants or a group of pollutants that present a significant risk to the quality of water. Probability maps showing that the nitrate concentrations exceed a legal threshold value in any location of the aquifer are used to assess risk of groundwater quality degradation from intensive agricultural activity in aquifers. In this paper we use Disjunctive Kriging to map the probability that the Nitrates Directive limit (91/676/EEC) is exceeded for the Nitrate Vulnerable Zone of the River Tagus alluvium aquifer.The Tagus alluvial aquifer system belongs to one of the most productive hydrogeological unit of continental Portugal and it is used to irrigate crops. Several groundwater monitoring campaigns were carried out from 2004 to 2006 according to the summer crops cycle.The study reveals more areas on the west bank with higher probabilities of contamination by nitrates (nitrate concentration values above 50 mg/L) than on the east bank.The analysis of synthetic temporal probability map shows the areas where there is an increase of nitrates concentration during the summers.  相似文献   

10.
The majority of drinking water supply zones in the United Kingdom are currently dosed with phosphate in order to meet the drinking water quality standards for lead. Consequent reductions in other metals released from domestic plumbing might be expected. Lead, copper, zinc and nickel concentrations in the tap water of supply zones and in effluents from related sewage works were examined to assess reductions in the concentrations of these metals associated with the dosing of orthophosphate. This paper provides an analysis of the impact of phosphate dosing of drinking water on the metal concentrations in drinking water and sewage work effluents and the potential impacts in relation to the Water Framework Directive. Phosphate treatment the reduced average copper concentrations in drinking water by around 40% from 65 to 35 μg/L; the reduction is proportional to the phosphate dose. A corresponding 30% decrease in wastewater treatment work effluent concentrations is observed. No significant changes are evident in the zinc and nickel concentrations.  相似文献   

11.
The substantial transformation of the angiotensin II receptor antagonist valsartan to the transformation product 2′-(2H-tetrazol-5-yl)-[1,1′-biphenyl]-4-carboxylic acid (referred to as valsartan acid) during the activated sludge process was demonstrated in the literature and confirmed in the here presented study. However, there was a severe lack of knowledge regarding the occurrence and fate of this compound in surface water and its behavior during drinking water treatment. In this work a comparative study on the occurrence and persistency of valsartan acid, three frequently used β-blockers (metoprolol, atenolol, and sotalol), atenolol acid (one significant transformation product of atenolol and metoprolol), and the two widely distributed persistent anthropogenic wastewater indicators carbamazepine and acesulfame in raw sewage, treated wastewater, surface water, groundwater, and tap water is presented. Median concentrations of valsartan acid in the analyzed matrices were 101, 1,310, 69, <1.0, and 65 ng L−1, respectively. Treated effluents from wastewater treatment plants were confirmed as significant source. Regarding concentration levels of pharmaceutical residues in surface waters valsartan acid was found just as relevant as the analyzed β-blockers and the anticonvulsant carbamazepine. Regarding its persistency in surface waters it was comparable to carbamazepine and acesulfame. Furthermore, removal of valsartan acid during bank filtration was poor, which demonstrated the relevance of this compound for drinking water suppliers. Regarding drinking water treatment (Muelheim Process) the compound was resistant to ozonation but effectively eliminated (≥90%) by subsequent activated carbon filtration. However, without applying activated carbon filtration the compound may enter the drinking water distribution system as it was demonstrated for Berlin tap water.  相似文献   

12.
This paper describes the development of a guidance tool for assessing the ability of a receiving watercourse to assimilate pollution from point discharges. The 'sustainable capacity tool'uses a framework that accounts for the 'no-deterioration'requirement of the Water Framework. Directive, in terms of the downgrading of a river-stretch classification and the requirement to return all rivers to 'good ecological status'. The second requirement results in a long-term set of river-quality targets or objectives, and it is generally assumed that 'good'refers to 'A2 quality in the Scottish Environmental Protection Agency classification system. The resulting sustainable capacity is defined as the risk-based amount of capacity that could be allocated without causing a failure of the target class and which could also result in a negative capacity if the river stretch is currently failing the target class. This is plotted as a GIS layer and is intended to form an overview of water quality to help inform stakeholders who are participating in a water-quality strategy for the next Scottish investment programme on Quality and Standards 3. The sustainable capacity tool could be used in conjunction with integrated catchment modelling for complete management of the Water Framework Directive river-basin districts.  相似文献   

13.
Diarrhea is the main health problem caused by human-related microsporidia, and waterborne transmission is one of the main risk factors for intestinal diseases. Recent studies suggest the involvement of water in the epidemiology of human microsporidiosis. However, studies related to the presence of microsporidia in different types of waters from countries where human microsporidiosis has been described are still scarce. Thirty-eight water samples from 8 drinking water treatment plants (DWTPs), 8 wastewater treatment plants (WWTPs) and 6 recreational river areas (RRAs) from Galicia (NW Spain) have been analyzed. One hundred liters of water from DWTPs and 50 L of water from WWTPs and RRAs were filtered to recover parasites, using the IDEXX Filta-Max® system.Microsporidian spores were identified by Weber’s stain and positive samples were analyzed by PCR, using specific primers for Enterocytozoon bieneusi, Encephalitozoon intestinalis, Encephalitozoon cuniculi, and Encephalitozoon hellem. Microsporidia spores were identified by staining protocols in eight samples (21.0%): 2 from DWTPs, 5 from WWTPs, and 1 from an RRA. In the RRA sample, the microsporidia were identified as E. intestinalis.To the best of our knowledge, this is the first report of human-pathogenic microsporidia in water samples from DWTPs, WWTPs and RRAs in Spain. These observations add further evidence to support that new and appropriate control and regulations for drinking, wastewater, and recreational waters should be established to avoid health risks from this pathogen.  相似文献   

14.
The use of Bassia indica for salt phytoremediation in constructed wetlands   总被引:1,自引:0,他引:1  
The treatment and reuse of wastewater in constructed wetlands offers a low-cost, environmentally-friendly alternative for common engineered systems. Salinity in treated wastewater is often increased, especially in arid and semi-arid areas, and may harm crops irrigated from wetlands. We have strong evidence that halophyte plants are able to reduce the salinity of wastewater by accumulating salts in their tissues. Bassia indica is an annual halophyte with unique adaptations for salt tolerance. We performed three experiments to evaluate the capability of B. indica for salt phytoremediation as follows: a hydroponic system with mixed salt solutions, a recirculated vertical flow constructed wetland (RVFCW) with domestic wastewater, and a vertical flow constructed wetland (VFCW) for treating goat farm effluents. B. Indica plants developed successfully in all three systems and reduced the effluent salinity by 20-60% in comparison with unplanted systems or systems planted with other wetland plants. Salinity reduction was attributed to the accumulation of salts, mainly Na and K, in the leaves. Our experiments were carried out on an operative scale, suggesting a novel treatment for green desalination in constructed wetlands by salt phytoremediation in desert regions and other ecosystems.  相似文献   

15.
The possible effects of changing climate on a southern and a north-eastern English river (the Thames and the Yorkshire Ouse, respectively) were examined in relation to water and ecological quality throughout the food web. The CLASSIC hydrological model, driven by output from the Hadley Centre climate model (HadCM3), based on IPCC low and high CO2 emission scenarios for 2080 were used as the basis for the analysis. Compared to current conditions, the CLASSIC model predicted lower flows for both rivers, in all seasons except winter. Such an outcome would lead to longer residence times (by up to a month in the Thames), with nutrient, organic and biological contaminant concentrations elevated by 70-100% pro-rata, assuming sewage treatment effectiveness remains unchanged. Greater opportunities for phytoplankton growth will arise, and this may be significant in the Thames. Warmer winters and milder springs will favour riverine birds and increase the recruitment of many coarse fish species. However, warm, slow-flowing, shallower water would increase the incidence of fish diseases. These changing conditions would make southern UK rivers in general a less favourable habitat for some species of fish, such as the Atlantic salmon (Salmo salar). Accidental or deliberate, introductions of alien macrophytes and fish may change the range of species in the rivers. In some areas, it is possible that a concurrence of different pressures may give rise to the temporary loss of ecosystem services, such as providing acceptable quality water for humans and industry. An increasing demand for water in southern England due to an expanding population, a possibly reduced flow due to climate change, together with the Water Framework Directive obligation to maintain water quality, will put extreme pressure on river ecosystems, such as the Thames.  相似文献   

16.
The benefits of Integrated Water Resources Management (IWRM) are widely known but its recommendations remain thinly implemented. Designing wastewater treatment plants for reuse in irrigation is a particularly underutilized IWRM opportunity that could potentially increase agricultural yields, conserve surface water, offset chemical fertilizer demand, and reduce the costs of wastewater treatment by eliminating nutrient removal processes. This paper presents a novel planning model, consisting of a reuse-centric performance assessment and optimization model to help design wastewater treatment plants for reuse in agriculture. The performance assessment and optimization model are described, and their coupled application is demonstrated in the peri-urban district of Pixian, China. Based on the results of the performance assessment, two reuse scenarios are evaluated: wastewater to supplement business as usual (BAU) irrigation, and wastewater to replace BAU irrigation. The results indicate that wastewater supplementation could increase profits by $20 million (M) annually; alternatively, wastewater replacement could conserve 35 Mm3 of water in local rivers each year.  相似文献   

17.
Quantitative assessment of multiple sources to short-term variations in recreational water quality, as indexed by faecal indicator organism (FIO) concentrations, is becoming increasingly important with adoption of modern water quality standards and catchment-based water quality management requirements (e.g. the EU Water Framework Directive, Article 11 ‘Programmes of Measures’ and the US Clean Water Act, ‘Total Maximum Daily Loads’). This paper describes a study combining microbial tracers, intensive FIO measurement, open channel hydrology and molecular microbial source tracking (MST) to enhance understanding of recreational water quality at Amroth in southwest Wales, UK. Microbial tracers were released from four stream inputs during a moderate hydrograph event. Tracers from two local streams impacted simultaneously with a period of maximum FIO concentrations at the near-shore compliance monitoring site. Connection between these inputs and this site were rapid (9-33 min). Water quality impairment from a more remote stream input followed, 12.85 h after tracer release, sustaining FIO concentrations above desired compliance levels. MST analysis showed dominance of ruminant Bacteroidales genetic markers, associated with agricultural pollution. This integration of tracers and MST offers additional information on the movement and individual sources causing water quality impairment.  相似文献   

18.
Several waterborne outbreaks of giardiasis have been linked to discharge of wastewater effluents into surface water. Little is known about the infectivity of Giardia lamblia cysts present in UV treated wastewater effluents. In this study, the infectivity of G. lamblia cysts, recovered from primary effluent and secondary effluent, both upstream and downstream of operating full-scale UV reactors at four wastewater treatment plants, was assessed using the Mongolian gerbil model. Infectivity of cysts obtained from the primary effluents was scored as either strong or moderate for induction of infection in gerbils at three out of four wastewater treatment plants. G. lamblia recovered from secondary effluent both upstream and downstream of the UV reactors caused weak infections in the gerbils. The probability of weak infections caused by inoculums of 50-1400 cysts per gerbil was, on the average, reduced by approximately 10% at the four wastewater UV installations with coliform reduction equivalent doses ranging from 6 to 18 mJ/cm2. The UV systems provided considerably less inactivation of the parasite than expected based on the UV dose response of Giardia reported in the literature.  相似文献   

19.
Surfactants are high production volume chemicals that are used in a wide assortment of “down-the-drain” consumer products. Wastewater treatment plants (WWTPs) generally remove 85 to more than 99% of all surfactants from influents, but residual concentrations are discharged into receiving waters via wastewater treatment plant effluents. The Trinity River that flows through the Dallas-Fort Worth metropolitan area, Texas, is an ideal study site for surfactants due to the high ratio of wastewater treatment plant effluent to river flow (> 95%) during late summer months, providing an interesting scenario for surfactant loading into the environment. The objective of this project was to determine whether surfactant concentrations, expressed as toxic units, in-stream water quality, and aquatic habitat in the upper Trinity River could be predicted based on easily accessible watershed characteristics. Surface water and pore water samples were collected in late summer 2005 at 11 sites on the Trinity River in and around the Dallas-Fort Worth metropolitan area. Effluents of 4 major waste water treatment plants that discharge effluents into the Trinity River were also sampled. General chemistries and individual surfactant concentrations were determined, and total surfactant toxic units were calculated. GIS models of geospatial, anthropogenic factors (e.g., population density) and natural factors (e.g., soil organic matter) were collected and analyzed according to subwatersheds. Multiple regression analyses using the stepwise maximum R2 improvement method were performed to develop prediction models of surfactant risk, water quality, and aquatic habitat (dependent variables) using the geospatial parameters (independent variables) that characterized the upper Trinity River watershed. We show that GIS modeling has the potential to be a reliable and inexpensive method of predicting water and habitat quality in the upper Trinity River watershed and perhaps other highly urbanized watersheds in semi-arid regions.  相似文献   

20.
The paper outlines how consent standards are normally calculated in Scotland for both river systems and tidal waters. A background is given to the reason why a more statistical approach has been adopted in England and Wales where the use of combining distribution methods is more widespread. Comparison of the two approaches is made, particularly with regard to their potential impact on resources required for treatment plants, and also the problems of taking enforcement action. The setting of standards under the EC urban waste water treatment Directive is considered where, in addition to the implications of primary, secondary and more stringent treatment, consideration is given to storm-sewage overflows and industrial discharges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号