首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wang S  Gunsch CK 《Water research》2011,45(11):3398-3406
The impact of four pharmaceutically active compounds (PhACs) introduced both individually and in mixtures was ascertained on the performance of laboratory-scale wastewater treatment sequencing batch reactors (SBRs). When introduced individually at concentrations of 0.1, 1 and 10 μM, no significant differences were observed with respect to chemical oxygen demand (COD) and ammonia removal. Microbial community analyses reveal that although similarity index values generally decreased over time with an increase in PhAC concentrations as compared to the controls, no major microbial community shifts were observed for total bacteria and ammonia-oxidizing bacteria (AOB) communities. However, when some PhACs were introduced in mixtures, they were found to both inhibit nitrification and alter AOB community structure. Ammonia removal decreased by up to 45% in the presence of 0.25 μM gemfibrozil and 0.75 μM naproxen. PhAC mixtures did not however affect COD removal performance suggesting that heterotrophic bacteria are more robust to PhACs than AOB. These results highlight that the joint action of PhACs in mixtures may have significantly different effects on nitrification than the individual PhACs. This phenomenon should be further investigated with a wider range of PhACs so that toxicity effects can more accurately be predicted.  相似文献   

2.
High global consumption rates have led to the occurrence of pharmaceutically active compounds (PhACs) in wastewater. The use of chlorine to disinfect wastewater prior to release into the environment may convert PhACs into uncharacterized chlorinated by-products. In this investigation, chlorination of a common pharmaceutical, the antihyperlipidemic agent gemfibrozil, was documented. Gemfibrozil (2,2-dimethyl-5-(2,5-dimethylphenoxy)pentanoic acid) was reacted with sodium hypochlorite and product formation was monitored by gas chromatography-mass spectrometry (GC-MS). The incorporation of one, two or three chlorine atoms into the aromatic region of gemfibrozil was demonstrated using negative-ion electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). Further analysis using 1H nuclear magnetic resonance (NMR) spectroscopy identified the reaction products as 4′-ClGem (5-(4-chloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid) 4′,6′-diClGem (5-(4,6-dichloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid), and 3′,4′,6′-triClGem (5-(3,4,6-trichloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid), products consistent with electrophilic aromatic substitution reactions. The rapid reaction of gemfibrozil with free chlorine at pH conditions relevant to water treatment indicates that a mixture of chlorinated gemfibrozils is likely to be found in wastewater disinfected with chlorine.  相似文献   

3.
Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) have been recognized as global environmental pollutants. Although PFOS and PFOA have been detected in tap water from Japan and several other countries, very few studies have examined the fate, especially removal, of perfluorinated compounds (PFCs) in drinking water treatment processes. In this study, we analyzed PFOS and PFOA at every stages of drinking water treatment processes in several water purification plants that employ advanced water treatment technologies. PFOS and PFOA concentrations did not vary considerably in raw water, sand filtered water, settled water, and ozonated water. Sand filtration and ozonation did not have an effect on the removal of PFOS and PFOA in drinking water. PFOS and PFOA were removed effectively by activated carbon that had been used for less than one year. However, activated carbon that had been used for a longer period of time (>1 year) was not effective in removing PFOS and PFOA from water. Variations in the removal ratios of PFOS and PFOA by activated carbon were found between summer and winter months.  相似文献   

4.
In Europe, the last two decades witnessed growing water stress, both in terms of water scarcity and quality deterioration, which prompted many municipalities for a more efficient use of the water resources, including a more widespread acceptance of water reuse practices. Treatment technology encompasses a vast variety of options. Constructed wetlands are regarded as key elements in polishing conventionally treated wastewater for recreational and environmental applications. A survey was conducted to assess the performance of tertiary free water surface constructed wetlands in treating both key and emerging contaminant categories in the perspective of water reuse. A database was created with information concerning systems with emerging and free-floating macrophytes. The database includes results from both full- and pilot-scale systems, and considers a broad variety of operating conditions. This paper provides an overview of the treatment performances of the constructed wetlands in the database and discusses their significance in the optic of water reclamation and reuse practices.  相似文献   

5.
Virus removal during simulated soil-aquifer treatment   总被引:8,自引:0,他引:8  
Removals of indigenous coliphage and seeded poliovirus type 1 during simulated soil-aquifer treatment were evaluated during transport of secondary effluent under unsaturated flow conditions in 1-m soil columns. Independent variables included soil type (river sand or sandy loam) and infiltration rate. Removal of coliphage was in all cases less than removal of poliovirus type 1 (strain LSc-2ab), supporting contentions that indigenous coliphage can act as a conservative indicator of groundwater contamination by viral pathogens of human origin. Coliphage retention was significantly more efficient (p<0.001) in the finer-grained sandy loam (93%) than in sand (76%). Increasing reactor detention time from 5 to 20 h increased coliphage attenuation from 70% to 99% in a 1-m sand column. There was a significant linear correlation (p=0.012) between log-transformed (fractional) coliphage concentration [log(C/C(0))] and reactor detention time. Re-mobilization of attached coliphage occurred during simulated rainfall using low-ionic-strength water. Inhibition of aerobic respiration resulted in significantly less efficient coliphage attenuation (p=0.033), suggesting the involvement of aerobic microorganisms in the survival/retention of this virus.  相似文献   

6.
We investigated the efficiencies of removal of 24 pharmaceutically active compounds (PhACs) during sand filtration and ozonation in an operating municipal sewage treatment plant (STP). The target compounds were 2 phenolic antiseptics (thymol, triclosan), 5 acidic analgesics or anti-inflammatories (ibuprofen, naproxen, ketoprofen, fenoprofen, mefenamic acid), 4 amide pharmaceuticals (propyphenazone, crotamiton, carbamazepine, diethyltoluamide), 7 antibiotics (sulfapyridine, sulfamethoxazole, trimethoprim, azithromycin, erythromycin anhydride, clarithromycin, roxithromycin), 3 phenolic endocrine-disrupting chemicals (EDCs) (nonylphenol:NP, octylphenol:OP, bisphenol A:BPA) and 3 natural estrogens (17 beta-estradiol:E2, estrone:E1, estriol:E3). Ozonation removed approximately 80% or more of the phenolic antiseptics, crotamiton, sulfonamide and macrolide antibiotics, and 17 beta-estradiol. Their removal is discussed in terms of chemical structure. The study ascertained the validity of ozonation mechanisms proposed by previous studies in an actually running STP. Compounds with a CC double bond or an aromatic structure with electron donors (e.g., phenol, alkyl, methoxy, or non-protonated amine) were susceptible to ozonation. Compounds with amide structures were resistant. Removal of the PhACs during sand filtration was generally inefficient, probably because of their low hydrophobicities. The combination of ozonation and sand filtration with activated sludge treatment gave efficient removal (>80%) of all the target compounds except carbamazepine and diethyltoluamide. Among all the steps in the plant, ozonation contributed substantially to overall removal of naproxen, ketoprofen, triclosan, crotamiton, sulfapyridine, macrolide antibiotics, and estrone.  相似文献   

7.
There is increasing interest in decentralization of wastewater collection and treatment systems. However, there have been no systematic studies of the performance of small treatment facilities compared with larger plants. A statistical analysis of 4 years of discharge monthly report (DMR) data from 210 operating wastewater treatment facilities was conducted to determine the effect of average flow rate and capacity utilization on effluent biochemical oxygen demand (BOD), total suspended solids (TSS), ammonia, and fecal coliforms relative to permitted values. Relationships were quantified using generalized linear models (GLMs). Small facilities (40 m3/d) had violation rates greater than 10 times that of the largest facilities (400,000 m3/d) for BOD, TSS, and ammonia. For facilities with average flows less than 40,000 m3/d, increasing capacity utilization was correlated with increased effluent levels of BOD and TSS. Larger facilities tended to operate at flows closer to their design capacity while maintaining treatment suggesting greater efficiency.  相似文献   

8.
Jia A  Wan Y  Xiao Y  Hu J 《Water research》2012,46(2):387-394
This study developed a method for analysis of nineteen quinolone and fluoroquinolone antibiotics (FQs) in sludge samples, and investigated the occurrence and fate of the FQs in a municipal sewage treatment plant (STP) with anaerobic, anoxic, and aerobic treatment processes. Eleven compounds, including pipemidic acid, fleroxacin, ofloxacin, norfloxacin, ciprofloxacin, enrofloxacin, lomefloxacin, sparfloxacin, gatifloxacin, moxifloxacin, and sarafloxacin (only in sludge), were detected in the STP. The predominance of ofloxacin and norfloxacin, followed by lomefloxacin, ciprofloxacin, gatifloxacin, and moxifloxacin, were found in wastewater, suspended solids, and sludge. The total concentrations of FQs were 2573 ± 241 ng/L, 1013 ± 218 ng/L, and 18.4 ± 0.9 mg/kg in raw sewage, secondary effluent, and sludge, respectively. Extremely low mass change percentages were observed for FQs in anaerobic, anoxic, and aerobic treatment units, suggesting biodegradation to be of minor importance in the removal of FQs in STPs. 50-87% of the initial FQs loadings (except for pipemidic acid (36%)) were ultimately found in the dewatered sludge. Mean removal efficiencies of FQs in the STP were 56-75%, except for new generation drugs such as moxifloxacin (40 ± 5%) and gatifloxacin (43 ± 13%). A significant positive correlation was found between removal efficiencies and Kd of FQs. The major factor in the removal of FQs in the STP was sorption to sludge, which was not governed by hydrophobic interactions. The long-term cycling and persistence of FQs in the STP has made activated sludge as a huge reservoir of FQ antibiotics.  相似文献   

9.
A 5-year program of study was conducted at the Sweetwater Recharge Facilities (SRF) to assess the performance of surface spreading operations for organics attenuation during field-scale soil-aquifer treatment (SAT) of municipal wastewater. Studies were conducted utilizing both mature (approximately 10 yr old) and new infiltration basins. Removals of dissolved organic carbon (DOC) were robust, averaging >90 percent during percolation through the local 37-m vadose zone. The hydrophilic (most polar) fraction of DOC was preferentially removed during SAT; removals were attributed primarily to biodegradation. Reductions in trihalomethane formation potential (THMFP) averaged 91 percent across the vadose zone profile. The reactivity (specific THMFP) of post-SAT organic residuals with chlorine decreased slightly from pre-SAT levels (60 vs. 72 microg THM per mg DOC, respectively). Variations in the duration of wetting/drying periods did not significantly impact organic removal efficiencies.  相似文献   

10.
The ozonation of an effluent from the secondary clarifier of two Municipal Wastewater Treatment Plants was performed by using alkaline ozone and a combination of ozone and hydrogen peroxide. Alkaline ozonation achieved only a moderate degree of mineralization, essentially concentrated during the first few minutes; but the addition of hydrogen peroxide eventually led to a complete mineralization. The evolution of total organic carbon (TOC) as a measure of the extent of mineralization and the concentration of dissolved ozone were analyzed and linked in a kinetic model whose parameter represented the product of the exposure to hydroxyl radicals and the kinetic constant of indirect ozonation. This rate parameter yielded the highest values during the first part of O(3)/H(2)O(2) runs. The kinetic constant for the decomposition of ozone at the end of the run was also measured and computed for the non-oxidizable water matrix and yielded essentially the same values regardless of whether or not hydrogen peroxide was used. A group of 33 organic compounds, mainly pharmaceuticals and some relevant metabolites present in the wastewater effluents, were evaluated before and after the ozonation process using a liquid chromatography-hybrid triple-quadrupole linear ion trap system (LC-QqLIT-MS). The results demonstrate that the ozonation degrades these compounds with efficiencies of over 99% in most cases, even under low mineralization conditions in alkaline ozonation.  相似文献   

11.
Li B  Zhang T 《Water research》2012,46(11):3703-3713
The effect of pH on chlorination behaviors of 12 antibiotics, including β-lactams, sulfonamides, fluoroquinolones, tetracyclines, macrolides, and others at environmentally relevant concentrations was systematically examined in the effluent matrix of activated sludge process. The removal of most antibiotics (except cefalexin and tetracycline) significantly depended on pH in the range of 5.5-8.5. The elimination rates of ciprofloxacin, norfloxacin, anhydro-erythromycin, and roxithromycin increased while that of sulfamethoxazole decreased significantly with the increase of pH. Sulfadiazine, ofloxacin, and trimethoprim exhibited the highest reactivity with free available chlorine under the pH of 6-7, 7, and 7.5, respectively. Not only the free available chlorine species (HOCl and OCl), but also the antibiotics species (cationic, neutral and anionic) affected the overall reaction rate. Anionic antibiotic species are usually much more reactive (1-3 orders of magnitude greater) than cationic antibiotic species toward free available chlorine. Although OCl is a weaker oxidant than HOCl, chlorination of sulfadiazine, sulfamethoxazole, ciprofloxacin, norfloxacin, and trimethoprim with OCl became significant at pH > 7.5. The observed kinetics rate constants calculated from species-specific rate constants could accurately (0.91 < R2 < 0.99) predict the antibiotic removal in chlorination of activated sludge effluent with similar DOC and ammonia concentration to this study at a given pH value.  相似文献   

12.
Hancock NT  Black ND  Cath TY 《Water research》2012,46(4):1145-1154
The purpose of this study was to determine the comparative environmental impacts of coupled seawater desalination and water reclamation using a novel hybrid system that consist of an osmotically driven membrane process and established membrane desalination technologies. A comparative life cycle assessment methodology was used to differentiate between a novel hybrid process consisting of forward osmosis (FO) operated in osmotic dilution (ODN) mode and seawater reverse osmosis (SWRO), and two other processes: a stand alone conventional SWRO desalination system, and a combined SWRO and dual barrier impaired water purification system consisting of nanofiltration followed by reverse osmosis. Each process was evaluated using ten baseline impact categories. It was demonstrated that from a life cycle perspective two hurdles exist to further development of the ODN-SWRO process: module design of FO membranes and cleaning intensity of the FO membranes. System optimization analysis revealed that doubling FO membrane packing density, tripling FO membrane permeability, and optimizing system operation, all of which are technically feasible at the time of this publication, could reduce the environmental impact of the hybrid ODN-SWRO process compared to SWRO by more than 25%; yet, novel hybrid nanofiltration-RO treatment of seawater and wastewater can achieve almost similar levels of environmental impact.  相似文献   

13.
During 8 sampling campaigns carried out over a period of two years, 72 samples, including influent and effluent wastewater, and sludge samples from three conventional wastewater treatment plants (WWTPs), were analyzed to assess the occurrence and fate of 43 pharmaceutical compounds. The selected pharmaceuticals belong to different therapeutic classes, i.e. non-steroidal anti-inflammatory drugs, lipid modifying agents (fibrates and statins), psychiatric drugs (benzodiazepine derivative drugs and antiepileptics), histamine H2-receptor antagonists, antibacterials for systemic use, beta blocking agents, beta-agonists, diuretics, angiotensin converting enzyme (ACE) inhibitors and anti-diabetics. The obtained results showed the presence of 32 target compounds in wastewater influent and 29 in effluent, in concentrations ranging from low ng/L to a few μg/L (e.g. NSAIDs). The analysis of sludge samples showed that 21 pharmaceuticals accumulated in sewage sludge from all three WWTPs in concentrations up to 100 ng/g. This indicates that even good removal rates obtained in aqueous phase (i.e. comparison of influent and effluent wastewater concentrations) do not imply degradation to the same extent. For this reason, the overall removal was estimated as a sum of all the losses of a parent compound produces by different mechanisms of chemical and physical transformation, biodegradation and sorption to solid matter. The target compounds showed very different removal rates and no logical pattern in behaviour even if they belong to the same therapeutic groups. What is clear is that the elimination of most of the substances is incomplete and improvements of the wastewater treatment and subsequent treatments of the produced sludge are required to prevent the introduction of these micro-pollutants in the environment.  相似文献   

14.
This work investigated the application of a solar driven advanced oxidation process (solar photo-Fenton), for the degradation of antibiotics at low concentration level (μg L−1) in secondary treated domestic effluents at a pilot-scale. The examined antibiotics were ofloxacin (OFX) and trimethoprim (TMP). A compound parabolic collector (CPC) pilot plant was used for the photocatalytic experiments. The process was mainly evaluated by a fast and reliable analytical method based on a UPLC-MS/MS system. Solar photo-Fenton process using low iron and hydrogen peroxide doses ([Fe2+]0 = 5 mg L−1; [H2O2]0 = 75 mg L−1) was proved to be an efficient method for the elimination of these compounds with relatively high degradation rates. The photocatalytic degradation of OFX and TMP with the solar photo-Fenton process followed apparent first-order kinetics. A modification of the first-order kinetic expression was proposed and has been successfully used to explain the degradation kinetics of the compounds during the solar photo-Fenton treatment. The results demonstrated the capacity of the applied advanced process to reduce the initial wastewater toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba) and the water flea Daphnia magna. The phytotoxicity of the treated samples, expressed as root growth inhibition, was higher compared to that observed on the inhibition of seed germination. Enterococci, including those resistant to OFX and TMP, were completely eliminated at the end of the treatment. The total cost of the full scale unit for the treatment of 150 m3 day−1 of secondary wastewater effluent was found to be 0.85 € m−3.  相似文献   

15.
The fate of 14 antidepressants along with their respective N-desmethyl metabolites and the anticonvulsive drug carbamazepine (CBZ) was studied in 5 different sewage treatment plants (STPs) across Canada. Using two validated LC-MS/MS analytical methods, the concentrations of the different compounds were determined in raw influent, final effluent and treated biosolids samples. Out of the 15 compounds investigated, 13 were positively detected in most 24-h composite raw influent samples. Analysis showed that venlafaxine (VEN), its metabolite O-desmethylvenlafaxine (DVEN), citalopram (CIT), and CBZ were detected at the highest concentrations in raw influent (up to 4.3 μg L−1 for DVEN). Cumulated results showed strong evidence that primary treatment and trickling filter/solids contact has limited capacity to remove antidepressants from sewage, while activated sludge, biological aerated filter, and biological nutrient removal processes yielded moderate results (mean removal rates: 30%). The more recalcitrant compounds to be eliminated from secondary STPs were VEN, DVEN and CBZ with mean removal rates close to 12%. Parent compounds were removed to a greater degree than their metabolites. The highest mean concentrations in treated biosolids samples were found for CIT (1033 ng g−1), amitriptyline (768 ng g−1), and VEN (833 ng g−1). Experimental sorption coefficients (Kd) were also determined. The lowest Kd values were obtained with VEN, DVEN, and CBZ (67-490 L kg−1). Sorption of these compounds on solids was assumed negligible (log Kd ≤ 2). However, important sorption on solids was observed for sertraline, desmethylsertraline, paroxetine and fluoxetine (log Kd > 4).  相似文献   

16.
Augmentation of potable water sources by planned indirect potable reuse of wastewater is being widely considered to address growing water shortages. Environmental buffers such as lakes and dams may act as one of a series of barriers to potable water contamination stemming from micropollutants in wastewater. In South-East Queensland, Australia, current government policy is to begin indirect potable reuse of water from reverse osmosis equipped advanced water treatment plants (AWTPs) when the combined capacity of its major storages is at 40% capacity. A total of 15 organic contaminants including NDMA and bisphenol A have been publically reported as detected in recycled water from one of South-East Queensland’s AWTPs, while another 98 chemicals were analysed for, but found to be below their detection limit. To assess the natural attenuation in Lake Wivenhoe, a Level III fugacity based evaluative fate model was constructed using the maximum concentrations of these contaminants detected as input data. A parallel aquivalence based model was constructed for those contaminants, such as dichloroacetic acid, dalapon and triclopyr, which are ionised in the environment of Lake Wivenhoe. A total of 247 organic chemicals of interest, including disinfection by-products, pesticides, pharmaceuticals and personal care products, xenoestrogens and industrial chemicals, were evaluated with the model to assess their potential for natural attenuation. Out of the 15 detected chemicals, trihalomethanes are expected to volatilise with concentrations in the outflow from the dam approximately 400 times lower than influent from the AWTPs. Transformation processes in water are likely to be more significant for NDMA and pharmaceuticals such as salicylic acid and paracetamol as well as for caffeine and the herbicides dalapon and triclopyr. For hydrophobic contaminants such as cholesterol and phenolic xenoestrogens such as 4-nonylphenol, 4-t-octylphenol and bisphenol A, equilibrium between water and sediments will not be attained and hence fate processes such as removal in outflow are predicted to become relatively important.  相似文献   

17.
Antimicrobial resistance of fecal coliforms (n = 153) and enterococci (n = 199) isolates was investigated in municipal wastewater treatment plant (WWTP) based on activated sludge system. The number of fecal indicators (in influent and effluent as well as in the aeration chamber and in return activated sludge mixture) was determined using selective media. Susceptibility of selected strains was tested against 19 (aminoglycosides, aztreonam, carbapenems, cephalosporins, β-lactam/β-lactamase inhibitors, fluoroquinolones, penicillines, tetracycline and trimethoprim/sulfamethoxazole) and 17 (high-level aminoglycosides, ampicillin, chloramphenicol, erythromycin, fluoroquinolones, glycopeptides, linezolid, lincosamides, nitrofuration, streptogramins, tetracycline) antimicrobial agents respectively. Among enterococci the predominant species were Enterococcus faecium (60.8%) and Enterococcus faecalis (22.1%), while remaining isolates belonged to Enterococcus hirae (12.1%), Enterococcus casseliflavus/gallinarum (4.5%), and Enterococcus durans (0.5%). Resistance to nitrofuration and erythromycin was common among enterococci (53% and 44%, respectively), and followed by resistance to ciprofloxacin (29%) and tetracycline (20%). The resistance phenotypes related to glycopeptides (up to 3.2%) and high-level aminoglycosides (up to 5.4%) were also observed. Most frequently, among Escherichia coli isolates the resistance patterns were found for ampicillin (34%), piperacillin (24%) and tetracycline (23%). Extended-spectrum β-lactamase producing E. coli was detected once, in the aeration chamber. In the study the applied wastewater treatment processes considerably reduced the number of fecal indicators. Nevertheless their number in the WWTP effluent was higher than 104 CFU per 100 ml and periodically contained 90% of bacteria with antimicrobial resistance patterns. The positive selection of isolates with antimicrobial resistance patterns was observed during the treatment processes. Substantial concern should be paid to the isolates resistant to 3 or more chemical classes of antimicrobials (MAR). In treated wastewater MAR E. coli and MAR enterococci constituted respectively 9% and 29% of tested isolates.  相似文献   

18.
The aim of this research is to characterize the organic matter showing endotoxicity in domestic wastewater. It is assumed that endotoxicity is caused by lipo-polysaccharide (LPS), particularly large and hydrophobic molecules. In this study, a batch experiment (decay test for 12 h) was conducted to confirm whether LPS is the cause of endotoxicity or not. 2-keto-3deoxyoctulosonic acid (KDO) was used as an indicator of presence of LPS.A size and structural characterization of several samples from raw and domestic wastewater was also carried out in order know which fractions are causing endotoxicity. Endotoxin and KDO patterns were found to be similar, peaking at the same time. Thus, organic matter showing endotoxicity, such as LPS was released in the decay test. Moreover, the organic matter released from bacteria during decay test was partly biodegradable. Results from size characterization (Molecular Weight Distribution) showed that the majority of endotoxin (up to 82%), in domestic sewage and secondary effluents,is composed of molecules larger than 100 kDa and less than 0.1 μm. Similarly, structural characterization (hydrophobic and hydrophilic) showed that the majority of endotoxin, ranging from 59% to 83% of the total endotoxicity, is hydrophobic fractions. Therefore, removing large and hydrophobic molecules from wastewater can be an effective way to achieve a significant decrease in its endotoxicity.  相似文献   

19.
In recent years ever-increasing amounts of pharmaceuticals are being detected in the aquatic environment and in some cases, they have even been discovered in drinking water. Their presence is attributed mainly to the inability of sewage treatment plants to adequately remove these compounds from the sewage influent. The aim of this study was to investigate the feasibility, kinetics and efficiency of using liquid-core microcapsules as a novel methodology, termed capsular perstraction, to remove seven pharmaceuticals commonly found in the environment, from water. The process involves the envelopment of pre-selected organic solvents within a porous hydrogel membrane to form liquid-core microcapsules, which can be used to extract a large range of compounds. Results indicate that this novel approach is capable of extracting the seven chosen compounds rapidly and with a variable efficiency. The simultaneous use of both dibutyl sebacate and oleic acid liquid-core microcapsules at a liquid volume ratio of only 4% (v/v) resulted in the following extractions within 50 min of capsule addition to contaminated water: furosemide 15%; clofibric acid 19%; sulfamethoxazole 22%; carbamazepine 54%; warfarin 80%; metoprolol 90% and diclofenac 100%. The effects of different agitation rates, microcapsule size and membrane thickness on the rate of mass transfer of warfarin into the liquid-core (dibutyl sebacate) of microcapsules was also examined. Results showed that the main rate-limiting step to mass transfer was due to the stagnant organic film (microcapsule size) within the core of the microcapsules. A volumetric mass transfer coefficient of 2.28 × 10−6 m/s was obtained for the smallest microcapsules, which was nearly 4-fold higher compared to the value (0.6 × 10−6 m/s) obtained for the largest microcapsules used in this study. Even with this resistance liquid-core microcapsules are still capable of the rapid extraction of the tested compounds and may provide a platform for the safe disposal of the pharmaceuticals after removal.  相似文献   

20.
Oxidation of pharmaceuticals during water treatment with chlorine dioxide   总被引:9,自引:0,他引:9  
The potential of chlorine dioxide (ClO2) for the oxidation of pharmaceuticals during water treatment was assessed by determining second-order rate constants for the reaction with selected environmentally relevant pharmaceuticals. Out of 9 pharmaceuticals only the 4 following compounds showed an appreciable reactivity with ClO2 (in brackets apparent second-order rate constants at pH 7 and T = 20 degrees C): the sulfonamide antibiotic sulfamethoxazole (6.7 x 10(3) M(-1) s(-1)), the macrolide antibiotic roxithromycin (2.2 x 10(2) M(-1) s(-1)), the estrogen 17alpha-ethinylestradiol (approximately 2 x 10(5) M(-1) s(-1)), and the antiphlogistic diclofenac (1.05 x 10(4) M(-1) s(-1)). Experiments performed using natural water showed that ClO2 also reacted fast with other sulfonamides and macrolides, the natural hormones estrone and 17beta-estradiol as well as 3 pyrazolone derivatives (phenazone, propylphenazone, and dimethylaminophenazone). However, many compounds in the study were ClO2 refractive. Experiments with lake water and groundwater that were partly performed at microgram/L to nanogram/L levels proved that the rate constants determined in pure water could be applied to predict the oxidation of pharmaceuticals in natural waters. Compared to ozone, ClO2 reacted more slowly and with fewer compounds. However, it reacted faster with the investigated compounds than chlorine. Overall, the results indicate that ClO2 will only be effective to oxidize certain compound classes such as the investigated classes of sulfonamide and macrolide antibiotics, and estrogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号