首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper provides an implicit central compact scheme for the numerical solution of incompressible Navier–Stokes equations. The solution procedure is based on the artificial compressibility method that transforms the governing equations into a hyperbolic-parabolic form. A fourth-order central compact scheme with a sixth-order numerical filtering is used for the discretization of convective terms and fourth-order central compact scheme for the viscous terms. Dual-time stepping approach is applied to time discretization with backward Euler difference scheme to the pseudo-time derivative, and three point second-order backward difference scheme to the physical time derivative. An approximate factorization-based alternating direction implicit scheme is used to solve the resulting block tridiagonal system of equations. The accuracy and efficiency of the proposed numerical method is verified by simulating several two-dimensional steady and unsteady benchmark problems.  相似文献   

2.
A numerically based simulator was developed to assist in the interpretation of complex laboratory experiments examining transport processes of chemical and biological contaminants subject to nonlinear adsorption and/or source terms. The inversion is performed with any of three nonlinear regression methods, Marquardt–Levenberg, conjugate gradient, or quasi-Newton. The governing equations for the problem are solved by the method of finite-differences including any combination of three boundary conditions: 1) Dirichlet, 2) Neumann, and 3) Cauchy. The dispersive terms in the transport equations were solved using the second-order accurate in time and space Crank–Nicolson scheme, while the advective terms were handled using a third-order in time and space, total variation diminishing (TVD) scheme that damps spurious oscillations around sharp concentration fronts. The numerical algorithms were implemented in the computer code INVERTS, which runs on any standard personal computer. Apart from a comprehensive set of test problems, INVERTS was also used to model the elution of a nonradioactive tracer, 185Re, in a pressurized unsaturated flow (PUF) experiment with a simulated waste glass for low-activity waste immobilization. Interpretation of the elution profile was best described with a nonlinear kinetic model for adsorption.  相似文献   

3.
This paper describes an accurate shock-capturing finite volume numerical method to solve a two-dimensional flow and solute transport problem in shallow water. Hydrodynamic and advection-diffusion equations are simultaneously solved by means of a Strang operator-splitting approach. The advective part is solved in time by a third-order TDV Runge-Kutta method and in space by a second-order WAF method coupled with a fifth-order WENO reconstruction. The diffusion part is solved in time and space by a second-order accurate method. Thus the overall accuracy is second-order both in time and space. Nevertheless the Strang splitting approach allows the advective part of the equations to be solved with a reconstruction of high order, where at lower orders it shows excessive numerical diffusion and damping, especially for very long time simulations. Very good results have been obtained applying the model to standard long time numerical tests.  相似文献   

4.
5.
6.
Truncated Dyson—Schwinger equations represent finite subsets of the equations of motion for Green's functions. Solutions to these nonlinear integral equations can account for nonperturbative correlations. We describe the solution to the Dyson—Schwinger equation for the gluon propagator of Landau gauge QCD in the Mandelstam approximation. This involves a combination of numerical and analytic methods: an asymptotic infrared expansion of the solution is calculated recursively. In the ultraviolet, the problem reduces to an analytically solvable differential equation. The iterative solution is then obtained numerically by matching it to the analytic results at appropriate points. Matching point independence is obtained for sufficiently wide ranges. The solution is used to extract a nonperturbative β-function. The scaling behavior is in good agreement with perturbative QCD. No further fixed point for positive values of the coupling is found which thus increases without bound in the infrared. The nonperturbative result implies an infrared singular quark interaction relating the scale A of the subtraction scheme to the string tension σ.  相似文献   

7.
In this article we analyse a fully discrete approximation to the time dependent viscoelasticity equations allowing for multicomponent fluid flow. The Oldroyd B constitutive equation is used to model the viscoelastic stress. For the discretization, time derivatives are replaced by backward difference quotients, and the non-linear terms are linearized by lagging appropriate factors. The modeling equations for the individual fluids are combined into a single system of equations using a continuum surface model. The numerical approximation is stabilized by using an SUPG approximation for the constitutive equation. Under a small data assumption on the true solution, existence of the approximate solution is proven. A priori error estimates for the approximation in terms of the mesh parameter h, the time discretization parameter Δt, and the SUPG coefficient ν are also derived. Numerical simulations of viscoelastic fluid flow involving two immiscible fluids are also presented.  相似文献   

8.
An implementation of the Constrained Interpolation Profile (CIP) algorithm to magnetohydrodynamic (MHD) simulations is presented. First we transform the original momentum and magnetic induction equations to unfamiliar forms by introducing Elsässer variables [W.M. Elsässer, The hydromagnetic equations, Phys. Rev. (1950)]. In this formulation, while the compressional and pressure gradient terms remain as non-advective terms, the advective and magnetic stress terms are expressed in the form of an advection equation, which enables us to use the CIP algorithm. We have examined some 1D test problems using the code based on this formula. Linear Alfvén wave propagation tests reveal that the developed code is capable of solving any Alfvén wave propagation with only small numerical diffusion and phase errors up to k?h=2.5 (where ?h is the grid spacing). A shock tube test shows good agreement with a previous result with less numerical oscillation at the shock front and the contact discontinuity which are captured within a few grid points. Extension of the 1D code to the multi-dimensional case is straightforward. We have calculated the 3D nonlinear evolution of the Kelvin-Helmholtz instability (KHI) and compared the result with our previous study. We find that our new MHD code is capable of following the 3D turbulence excited by the KHI while retaining the solenoidal property of the magnetic field.  相似文献   

9.
Numerical solutions to a laminar boundary layer flow past a sphere are considered. The solutions are presented using the procedure of Gosman et al. [1] with appropriate modifications. Successful numerical solution procedures have been devised for the solution of flow problems, see [5]. The SOR method is chosen as a method of solution. Although it looks like a simple method, application of such a method to nonlinear Navier-Stokes equations is highly nontrivial. The matrix method is not used because convergence was not a problem for the type of flow considered in this paper. The governing nonlinear differential equations are converted into finite difference equations by integrating the equations over a control volume and are then solved by an iterative procedure. The numerical results predict that the transverse velocity vθ is positive in the upper hemisphere, goes to zero in the equitorial plane and becomes negative in the lower hemisphere.  相似文献   

10.
This paper presents a second-order accurate adaptive Godunov method for two-dimensional (2D) compressible multicomponent flows, which is an extension of the previous adaptive moving mesh method of Tang et al. (SIAM J. Numer. Anal. 41:487–515, 2003) to unstructured triangular meshes in place of the structured quadrangular meshes. The current algorithm solves the governing equations of 2D multicomponent flows and the finite-volume approximations of the mesh equations by a fully conservative, second-order accurate Godunov scheme and a relaxed Jacobi-type iteration, respectively. The geometry-based conservative interpolation is employed to remap the solutions from the old mesh to the newly resulting mesh, and a simple slope limiter and a new monitor function are chosen to obtain oscillation-free solutions, and track and resolve both small, local, and large solution gradients automatically. Several numerical experiments are conducted to demonstrate robustness and efficiency of the proposed method. They are a quasi-2D Riemann problem, the double-Mach reflection problem, the forward facing step problem, and two shock wave and bubble interaction problems.  相似文献   

11.
Since most turbulent flows cannot be computed directly from the incompressible Navier-Stokes equations, a dynamically less complex mathematical formulation is sought. In the quest for such a formulation, we consider nonlinear approximations of the convective term that preserve the symmetry and conservation properties. In particularly, the energy, enstrophy (in 2D) and helicity are conserved. The underlying idea is to restrain the convective production of small scales in an unconditional stable manner, meaning that the approximate solution cannot blow up in the energy-norm (in 2D also: enstrophy-norm). The numerical algorithm used to solve the governing equations preserves the symmetry and conservation properties too. The resulting simulation method is successfully tested for a turbulent channel flow (Reτ = 180 and 395).  相似文献   

12.
13.
Log-aesthetic curves (LACs) have recently been developed to meet the requirements of industrial design for visually pleasing shapes. LACs are defined in terms of definite integrals, and adaptive Gaussian quadrature can be used to obtain curve segments. To date, these integrals have only been evaluated analytically for restricted values (0,1,2) of the shape parameter α.We present parametric equations expressed in terms of incomplete gamma functions, which allow us to find an exact analytic representation of a curve segment for any real value of α. The computation time for generating an LAC segment using the incomplete gamma functions is up to 13 times faster than using direct numerical integration. Our equations are generalizations of the well-known Cornu, Nielsen, and logarithmic spirals, and involutes of a circle.  相似文献   

14.
Splitting methods are frequently used for the solution of large stiff initial value problems of ordinary differential equations with an additively split right-hand side function. Such systems arise, for instance, as method of lines discretizations of evolutionary partial differential equations in many applications. We consider the choice of explicit Runge-Kutta (RK) schemes in implicit-explicit splitting methods. Our main objective is the preservation of positivity in the numerical solution of linear and nonlinear positive problems while maintaining a sufficient degree of accuracy and computational efficiency. A three-stage second-order explicit RK method is proposed which has optimized positivity properties. This method compares well with standard s-stage explicit RK schemes of order s, s = 2, 3. It has advantages in the low accuracy range, and this range is interesting for an application in splitting methods. Numerical results are presented.  相似文献   

15.
We consider the equations of electromagnetism set on a domain made of a dielectric and a conductor subdomain in a regime where the conductivity is large. Assuming smoothness for the dielectric–conductor interface, relying on recent works we prove that the solution of the Maxwell equations admits a multiscale asymptotic expansion with profile terms rapidly decaying inside the conductor. This skin effect is measured by introducing a skin depth function that turns out to depend on the mean curvature of the boundary of the conductor. We then confirm these asymptotic results by numerical experiments in various axisymmetric configurations. We also investigate numerically the case of a nonsmooth interface, namely a cylindrical conductor.  相似文献   

16.
This paper describes a numerical method for calculating incompressible viscous flows between two concentric rotating spheres. The dependent variables describing the axisymmetric flow field are the azimuthal components of the vorticity, of the velocity vector potential and of the velocity. The coupled set of governing partial differential equations is written as a system of strictly second-order equations by introducing vorticity conditions of an integral character in a meridional plane. Such conditions generalize the one-dimensional integral conditions employed by Dennis and Singh to calculate steady-state solutions of the same problem using Gegenbauer polynomials and finite differences. The basic equations are discretized in space and in time by means of the finite-difference method. A fourth-order accurate centred-difference approximation of the advection terms is employed and a nonlinearly implicit scheme for the discrete time integration is here considered. A general finite-difference algorithm for steady-state and time-dependent problems is obtained which has no relaxation parameter and makes extensive use of fast elliptic solvers. The numerical results obtained by the present method are found to be in good agreement with the literature and confirm the nonuniqueness of the steady-state solution in a narrow spherical gap at certain regimes.  相似文献   

17.
This paper proposes a second-order scheme of precision integration for dynamic analysis with respect to long-term integration. Rather than transforming into first-order equations, a recursive scheme is presented in detail for direct solution of the homogeneous part of second-order algebraic and differential equations. The sine and cosine matrices involved in the scheme are calculated using the so-called 2N algorithm. Numerical tests show that both the efficiency and the accuracy of homogeneous equations can be improved considerably with the second-order scheme. The corresponding particular solution is also presented, incorporated with the second-order scheme where the excitation vector is approximated by the truncated Taylor series.  相似文献   

18.
Time-varying imagery is often described in terms of image flow fields (i.e., image motion), which correspond to the perceptive projection of feature motions in three dimensions (3D). In the case of multiple moving objects with smooth surfaces, the image flow possesses an analytic structure that reflects these 3D properties. This paper describes the analytic structure of image flow fields in the image space-time domain, and its use for segmentation and 3D motion computation. First we discuss thelocal flow structure as embodied in the concept ofneighborhood deformation. The local image deformation is effectively represented by a set of 12 basis deformations, each of which is responsible for an independent deformation. This local representation provides us with sufficient information for the recovery of 3D object structure and motion, in the case of relative rigid body motions. We next discuss theglobal flow structure embodied in the partitioning of the entire image plane intoanalytic regions separated byboundaries of analyticity, such that each small neighborhood within the analytic region is described in terms of deformation bases. This analysis reveals an effective mechanism for detecting the analytic boundaries of flow fields, thereby segmenting the image into meaningful regions. The notion ofconsistency which is often used in the image segmentation is made explicit by the mathematical notion ofanalyticity derived from the projection relation of 3D object motion. The concept of flow analyticity is then extended to the temporal domain, suggesting a more robust algorithm for recovering image flow from multiple frames. Finally, we argue that the process of flow segmentation can be understood in the framework of grouping process. The general concept ofcoherence orgrouping through local support (such as the second-order flows in our case) is discussed.  相似文献   

19.
This paper describes the development of a Boussinesq three-equation model for simulating propagation and transformation of periodic nonlinear waves (cnoidal waves) in an arbitrary shallow-water basin. The Boussinesq equations in terms of depth-averaged horizontal velocities and free-surface elevation are solved numerically in a curvilinear coordinate system. An Euler’s predictor-corrector finite-difference algorithm is applied for numerical computation. The effects of irregular boundary, non-uniform water depth and coastal structures inside a basin are all included in the model simulation. A second-order cnoidal wave solution for the Boussinesq equations is used as an incident wave condition. A set of open boundary conditions is also applied to effectively transmit waves out of the computational domain. Model tests were conducted by simulating waves propagating past an isolated breakwater. The effect of variable depth was examined with modeling waves over an uneven bottom with convex ramp topography. The overall evolution of wave propagation, diffraction and reflection in coupled harbors with various layouts of inner and outer breakwaters was also studied. Data comparisons reveal that the simulated wave heights agree reasonably well with laboratory measurements, especially in the region of inner basin.  相似文献   

20.
In this paper, we consider the linearized Navier-Stokes equations in two dimensions under specified boundary conditions. We study both the continuous case and a discretization using a second-order finite difference method on a staggered grid and derive estimates for both the analytic solution and the approximation on staggered grids. We present numerical experiments to verify our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号