首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aerobic granular sludge from a lab-scale reactor with simultaneous nitrification/denitrification and enhanced biological phosphorus removal processes exhibited significant amount of ammonium adsorption (1.5 mg NH4+-N/g TSS at an ammonium concentration of 30 mg N/L). Potassium release accompanied ammonium adsorption, indicating an ion exchange process. The existence of potassium magnesium phosphate (K-struvite) as one of potassium sources in the granular sludge was studied by X-ray diffraction analysis (XRD). Artificially prepared K-struvite was indeed shown to adsorb ammonium. Alginate-like exopolysaccharides were isolated and their inducement for struvite formation was investigated as well. Potassium magnesium phosphate proved to be a major factor for ammonium adsorption on the granular sludge. Struvites (potassium/ammonium magnesium phosphate) accumulate in aerobic granular sludge due to inducing of precipitation by alginate-like exopolysaccharides.  相似文献   

2.
The ammonium adsorption properties of aerobic granular sludge, activated sludge and anammox granules have been investigated. During operation of a pilot-scale aerobic granular sludge reactor, a positive relation between the influent ammonium concentration and the ammonium adsorbed was observed. Aerobic granular sludge exhibited much higher adsorption capacity compared to activated sludge and anammox granules. At an equilibrium ammonium concentration of 30 mg N/L, adsorption obtained with activated sludge and anammox granules was around 0.2 mg NH4-N/g VSS, while aerobic granular sludge from lab- and pilot-scale exhibited an adsorption of 1.7 and 0.9 mg NH4-N/g VSS, respectively. No difference in the ammonium adsorption was observed in lab-scale reactors operated at different temperatures (20 and 30 °C). In a lab-scale reactor fed with saline wastewater, we observed that the amount of ammonium adsorbed considerably decreased when the salt concentration increased. The results indicate that adsorption or better ion exchange of ammonium should be incorporated into models for nitrification/denitrification, certainly when aerobic granular sludge is used.  相似文献   

3.
Aerobic granulation of activated sludge was achieved in a pilot-scale sequencing batch reactor (SBR) for the treatment of low-strength municipal wastewater (<200 mg L−1 of COD, chemical oxygen demand). The volume exchange ratio and settling time of an SBR were found to be two key factors in the granulation of activated sludge grown on the low-strength municipal wastewater. After operation of 300 days, the mixed liquor suspended solids (MLSS) concentration in the SBR reached 9.5 g L−1 and consisted of approximate 85% granular sludge. The average total COD removal efficiency kept at 90% and NH4+-N was almost completely depleted (∼95%) after the formation of aerobic granules. The granules (with a diameter over 0.212 mm) had a diameter ranging from 0.2 to 0.8 mm and had good settling ability with a settling velocity of 18-40 m h−1. Three bacterial morphologies of rod, coccus and filament coexisted in the granules. Mathematical modeling was performed to get insight into this pilot-scale granule-based reactor. The modified IWA activated sludge model No 3 (ASM3) was able to adequately describe the pilot-scale SBR dynamics during its cyclic operation.  相似文献   

4.
Development of granular sludge for textile wastewater treatment   总被引:2,自引:0,他引:2  
Microbial granular sludge that is capable to treat textile wastewater in a single reactor under intermittent anaerobic and aerobic conditions was developed in this study. The granules were cultivated using mixed sewage and textile mill sludge in combination with anaerobic granules collected from an anaerobic sludge blanket reactor as seed. The granules were developed in a single sequential batch reactor (SBR) system under alternating anaerobic and aerobic condition fed with synthetic textile wastewater. The characteristics of the microbial granular sludge were monitored throughout the study period. During this period, the average size of the granules increased from 0.02 ± 0.01 mm to 2.3 ± 1.0 mm and the average settling velocity increased from 9.9 ± 0.7 m h−1 to 80 ± 8 m h−1. This resulted in an increased biomass concentration (from 2.9 ± 0.8 g L−1 to 7.3 ± 0.9 g L−1) and mean cell residence time (from 1.4 days to 8.3 days). The strength of the granules, expressed as the integrity coefficient also improved. The sequential batch reactor system demonstrated good removal of COD and ammonia of 94% and 95%, respectively, at the end of the study. However, only 62% of color removal was observed. The findings of this study show that granular sludge could be developed in a single reactor with an intermittent anaerobic-aerobic reaction phase and is capable in treating the textile wastewater.  相似文献   

5.
Anaerobic granulation describes the self-immobilisation of methanogenic consortia into dense, particulate biofilms. This procedure underpins the operation of several categories of high-rate anaerobic wastewater treatment system. Full-scale anaerobic granular sludge plants have been generally operated in the mesophilic (20-45 °C) or thermophilic (45-65 °C) temperature range. On the other hand, recent studies highlighted the economic advantages of treating wastewaters at their discharge temperatures (mostly under 18 °C), removing a costly heating process and increasing net biogas yield. However, as yet, relatively little information is available about the microbial behaviour and interactions in anaerobic granular sludge formed under psychrophilic conditions. To this end, and in order to provide a microbial insight into low-temperature anaerobic granulation, we monitored the changes in methanogenic community structure, associated with the changes in process performance. Three, laboratory-scale, expanded granular sludge bed (EGSB) bioreactors treating a synthetic glucose wastewater were tested at two temperatures of 37 ± 1 °C (R1) and 15 ± 1 °C (R2 and 3). Quantitative real-time PCR and specific methanogenic activity assays highlighted a community shift towards hydrogenotrophic methanogens, particularly the order Methanomicrobiales in the low-temperature bioreactors. Corresponding to this, denaturing gradient gel electrophoresis (DGGE) analysis identified the emergence and maintenance of a Methanocorpusculum-like organism. Our results indicate that hydrogenotrophic methanogens, particularly the Methanomicrobiales-related populations, are likely to play important roles in low-temperature anaerobic granular sludge systems. This suggests that the process efficiency could be improved by facilitating the growth and retention of this group.  相似文献   

6.
In this study the influence of a pre-anoxic feast period on granular sludge formation in a sequencing batch airlift reactor is evaluated. Whereas a purely aerobic SBR was operated as a reference (reactor R2), another reactor (R1) was run with a reduced aeration rate and an alternating anoxic-aerobic cycle reinforced by nitrate feeding. The presence of pre-anoxic phase clearly improved the densification of aggregates and allowed granular sludge formation at reduced air flow rate (superficial air velocity (SAV) = 0.63 cm s−1). A low sludge volume index (SVI30 = 45 mL g−1) and a high MLSS concentration (9–10 g L−1) were obtained in the anoxic/aerobic system compared to more conventional results for the aerobic reactor. A granular sludge was observed in the anoxic/aerobic system whilst only flocs were observed in the aerobic reference even when operated at a high aeration rate (SAV = 2.83 cm s−1). Nitrification was maintained efficiently in the anoxic/aerobic system even when organic loading rate (OLR) was increased up to 2.8 kg COD m−3 d−1. In the contrary nitrification was unstable in the aerobic system and dropped at high OLR due to competition between autotrophic and heterotrophic growth. The presence of a pre-anoxic period positively affected granulation process via different mechanisms: enhancing heterotrophic growth/storage deeper in the internal anoxic layer of granule, reducing the competition between autotrophic and heterotrophic growth. These processes help to develop dense granular sludge at a moderate aeration rate. This tends to confirm that oxygen transfer is the most limiting factor for granulation at reduced aeration. Hence the use of an alternative electron acceptor (nitrate or nitrite) should be encouraged during feast period for reducing energy demand of the granular sludge process.  相似文献   

7.
CeO2 nanoparticles were synthesized hydrothermally and utilized as redox mediator for the fabrication of efficient ethanol chemi-sensor. The developed chemi-sensor showed an excellent performance for electrocatalytic oxidization of ethanol by exhibiting higher sensitivity (0.92 μA?cm− 2?mM− 1) and lower limit of detection (0.124 ± 0.010 mM) with the linear dynamic range of 0.17 mM-0.17 M. CeO2 nanoparticles have been characterized by field emission scanning electron microscopy (FESEM), Energy dispersive spectroscopy (EDS), X-ray powder diffraction (XRD), Raman spectrum, Fourier transform infrared spectroscopy (FTIR), and UV-visible absorption spectrum which revealed that the synthesized CeO2 is an aggregated form of optically active spherical nanoparticles with the range of 15-36 nm (average size of ~ 25 ±10 nm) and possessing well crystalline cubic phase. Additionally, CeO2 performed well as a photo-catalyst by degrading amido black and acridine orange.  相似文献   

8.
Maite Pijuan 《Water research》2009,43(14):3622-220
The effect of long term anaerobic and intermittent anaerobic/aerobic starvation on the structure and activity of aerobic granules was studied. Aerobic granular sludge treating abattoir wastewater and achieving high levels of nutrient removal was subjected to 4-5 week starvation under anaerobic and intermittent anaerobic/aerobic conditions. Microscopic pictures of granules at the beginning of the starvation period presented a round and compact surface morphology with a much defined external perimeter. Under both starvation conditions, the morphology changed at the end of starvation with the external border of the granules surrounded by floppy materials. The loss of granular compactness was faster and more pronounced under anaerobic/aerobic starvation conditions. The release of Ca2+ at the onset of anaerobic/aerobic starvation suggests a degradation of extracellular polymeric substances. The activity of ammonia oxidizing bacteria was reduced by 20 and 36% during anaerobic and intermittent anaerobic/aerobic starvation, respectively. When fresh wastewater was reintroduced, the granules recovered their initial morphology within 1 week of normal operation and the nutrient removal activity recovered fully in 3 weeks. The results show that both anaerobic and intermittent anaerobic/aerobic conditions are suitable for maintaining granule structure and activity during starvation.  相似文献   

9.
The main objective of the study is to quantify the polycyclic aromatic hydrocarbons (PAHs) concentration levels (US EPA priority components) in fine traffic-generated particles (PM2.5) at various heights of typical multi-storey public housing buildings located in close proximity, i.e. within 30 m and along a busy major expressway in Singapore. The secondary objective is to estimate the potential health risks associated with inhalation exposure, based on the toxic equivalency factors (TEFs) at the various floors of these buildings. Two typical public housing buildings, both naturally ventilated residential apartment blocks, of point block configuration (22-storey) and slab block configuration (16-storey) were selected for the study. Particulate samples were collected for chemical analysis at three representative floors: the lower, the mid, and the upper floors of the buildings. Key meteorological parameters such as wind speed, wind direction, ambient temperature, and relative humidity were also measured at the representative floors. All samples were analyzed for the 16 PAH priority pollutants listed by US EPA. The vertical PAH distribution profile varies with height of building depending on the type of block configuration. The total mean concentrations of particulate PAHs for point and slab blocks are 3.32±1.76 ng/m3 (0.56–7.2 ng/m3) and 6.0±1.88 ng/m3 (3.19–10.26 ng/m3), respectively. For the point block, the highest mean total PAH concentration occurred at the mid floor followed by the upper floor. The lower floor had the least mean total PAH concentration. For the slab block, the highest mean total PAH concentration occurred at the lower floor and remained almost constant up to the mid floor and thereafter gradually decreased from mid floor to upper floor of the building. These results suggest that the building configuration influences the vertical distribution of particulate PAHs. The dominant particulate PAHs measured at the point block are naphthalene, acenaphthylene, benzo(b)fluoranthene, and benzo(g,h,i)perylene while those for the slab block, the main particulate PAHs are naphthalene, phenanthrene, fluoranthene, and benzo(g,h,i)perylene. The Bpe/Ind ratio for both blocks ranged from 0.92±0.2 to 1.63±0.6 indicating particulate PAHs are contributed by a mixture of both diesel and petrol engine type of vehicles, with diesel engine vehicles contributing a higher percentage of particulate PAHs to the different floor levels of both buildings. The total BaPeq concentrations for point and slab blocks are 1.06±0.64 ng/m3 (0.14–2.45 ng/m3) and 0.94±1.22 ng/m3 (0.10–4.59 ng/m3), respectively. The total BaP equivalency results showed the potential health risk to cancer due to inhalation exposure is of concern for residents living in both blocks since the total BaPeq concentrations for both blocks were very close to, or slightly exceeded the maximum permissible risk level of 1 ng/m3 of benzo(a)pyrene.  相似文献   

10.
Yan ST  Chu LB  Xing XH  Yu AF  Sun XL  Jurcik B 《Water research》2009,43(1):195-246
Using the practical sludge obtained from municipal sewage treatment plants, the mechanism of the sludge ozonation process was systematically investigated by a combination of biological and chemical approaches, including analysis of the changes in biological response by CFU and PCR-DGGE, bio-macromolecular activity and radical scavenging activity. The results indicated that after the sludge was exposed to ozone at less than 0.02 g O3/g TSS, the DGGE fingerprint remained constant and there was still some enzyme activity, indicating that the sludge solubilization was the main process. At greater than 0.02 g O3/g TSS, the bacteria began to be broken down and ozone was used to oxidize the bio-macromolecules such as proteins and DNA released from the sludge. Bacteria belonging to ‘G-Bacteria’ were able to conserve their DNA in the presence of less than 0.08 g O3/g TSS. At levels higher than 0.10 g O3/g TSS, the disintegration of the sludge matrix became slow and the microbes lost most of their activity, and ozone was used to transform the bio-macromolecules into small molecules. However, at levels higher than 0.14 g O3/g TSS, the ozone failed to oxidize the sludge efficiently, because several radical scavengers such as lactic acid and SO42− were released from the microbial cells in the sludge.  相似文献   

11.
The sol-gel transition of extracellular polymeric substances (EPS) derived from sludge flocs and granules is investigated in order to explain basic differences between the two aggregates. A reversible, pH dependent sol-gel transition was observed at pH 9.0–12.0 in EPS extracted from granules. At pH <9 granule EPS existed as a strong gel, indicating that their EPS exist in a gel state at normal operating pH of a wastewater treatment system (i.e. 6.0–8.5). This characteristic transition from solution to strong gel was not observed in any of the EPS samples derived from floccular sludges. A transition to a weak gel was however, observed at pH 4.0–5.0. Enriched exopolysaccharides from the granular EPS exhibited rheological behaviour analogous to the granules and the granule EPS. The critical overlap concentration (c*) of the exopolysaccharide concentrate was 0.33% w/w, similar to the c* of other known bacterial exopolysaccharides. Additionally, the protein content was found to be not contributing to the storage modulus of granule EPS gels. These factors suggest that exopolysaccharides or glycosides were the gelling agent in aerobic sludge granules. Given that EPS derived from aerobic sludge granules and flocs are distinguished by such a sol-strong gel transition, these exopolysaccharides therefore likely play an important role in granulation.  相似文献   

12.
Dong-Hoon Kim  Sae-Eun Oh 《Water research》2010,44(10):3093-12378
The individual effects of alkaline (pH 8-13) and ultrasonic (3750-45,000 kJ/kg TS) pretreatments on the disintegration of sewage sludge were separately tested, and then the effect of combining these two methods at different intensity levels was investigated using response surface methodology (RSM). In the combined pretreatment, ultrasonic treatment was applied to the alkali-pretreated sludge. While the solubilization (SCOD/TCOD) increase was limited to 50% in individual pretreatments, it reached 70% in combined pretreatment, and the results clearly showed that preconditioning of sludge at high pH levels played a crucial role in enhancing the disintegration efficiency of the subsequent ultrasonic pretreatment. By applying regression analysis, the disintegration degree (DD) was fitted based on the actual value to a second order polynomial equation: Y = −172.44 + 29.82X1 + 5.30 × 10−3X2 − 7.53 × 10−5X1X2 − 1.10X12 − 1.043 × 10−7X22, where X1, X2, and Y are pH, specific energy input (kJ/kg TS), and DD, respectively. In a 2D contour plot describing the tendency of DD with respect to pH and specific energy input, it was clear that DD increased as pH increased, but it seemed that DD decreased when the specific energy input exceeded about 20,000 kJ/kg TS. This phenomenon tells us that there exists a certain point where additional energy input is ineffective in achieving further disintegration. A synergetic disintegration effect was also found in the combined pretreatment, with lower specific energy input in ultrasonic pretreatment yielding higher synergetic effect. Finally, in order to see the combined pretreatment effect in continuous operation, the sludge pretreated with low intensity alkaline (pH 9)/ultrasonic (7500 kJ/kg TS) treatment was fed to a 3 L of anaerobic sequencing batch reactor after 70 days of control operation. CH4 production yield significantly increased from 81.9 ± 4.5 mL CH4/g CODadded to 127.3 ± 5.0 mL CH4/g CODadded by pretreatment, and this enhanced performance was closely related to the solubilization increase of the sludge by pretreatment. However, enhanced anaerobic digestion resulted in 20% higher soluble N concentration in the reactor, which would be an additional burden in the subsequent nitrogen removal system.  相似文献   

13.
Pilot-scale struvite crystallization tests using anaerobic effluent from potato processing industries were performed at three different plants. Two plants (P1 & P2) showed high phosphate removal efficiencies, 89 ± 3% and 75 ± 8%, resulting in final effluent levels of 12 ± 3 mg PO43−-P L−1 and 11 ± 3 mg PO43−-P L−1, respectively. In contrast, poor phosphate removal (19 ± 8%) was obtained at the third location (P3). Further investigations at P3 showed the negative effect of high Ca2+/PO43−-P molar ratio (ca. 1.25 ± 0.11) on struvite formation. A full-scale struvite plant treating anaerobic effluent from a dairy industry showed the same Ca2+ interference. A shift in the influent Ca2+/PO43−-P molar ratio from 2.69 to 1.36 resulted in average total phosphorus removal of 78 ± 7%, corresponding with effluent levels of 14 ± 4 mg Ptotal L−1 (9 ± 3 mg PO43−-P L−1). Under these conditions high quality spherical struvite crystals of 2-6 mm were produced.  相似文献   

14.
The anaerobic digester is a vital component in a zero-discharge mariculture system as therein most of the organic matter is mineralized and nitrogen-containing compounds are converted to gaseous N2. Although denitrification is a major respiratory process in this nitrate-rich treatment stage, also sulfate respiration takes place and may cause undesirable high sulfide concentrations in the effluent water. To examine the effect of sulfide on nitrate reduction, in situ depth profiles of inorganic nitrogen and sulfur compounds were determined. Additionally, nitrate reduction was examined as a function of ambient sulfide concentrations in sludge collected from different locations in the anaerobic reactor. Depth profiles showed high concentrations of nitrate and low concentrations of sulfide and ammonia in the aqueous layer of the reactor. A sharp decrease of nitrate and an increase in sulfide and ammonia concentrations was measured at the water-sludge interface. Nitrate reduction was highest in this interface zone with rates of up to 8.05 ± 0.57 μmol NO3 h−1 g(sludge)−1. Addition of sulfide increased the nitrate reduction rate at all sludge depths, pointing to the important role of autotrophic denitrification in the anaerobic reactor. Dissimilatory nitrate reduction to ammonia (DNRA) was found to be low in all sludge layers but was enhanced when sludge was incubated at high sulfide concentrations. Although nitrate reduction rates increased as a result of sulfide addition to sludge samples, no differences in nitrate reduction rates were observed between the samples incubated with different initial sulfide concentrations. This as opposed to sulfide oxidation rates, which followed Michaelis-Menten enzymatic kinetics. Partial oxidation of sulfide to elemental sulfur instead of a complete oxidation to sulfate, could explain the observed patterns of nitrate reduction and sulfide oxidation in sludge incubated with different initial sulfide concentrations.  相似文献   

15.
Cassidy DP  Belia E 《Water research》2005,39(19):4817-4823
The formation and performance of granular sludge was studied in an 8 l sequencing batch reactor (SBR) treating an abattoir (slaughterhouse) wastewater. Influent concentrations averaged 1520 mg l−1 volatile suspended solids (VSS), 7685 mg l−1 Chemical oxygen demand (COD), 1057 mg l−1 total kjeldahl nitrogen (TKN), 217 mg l−1 total P. The COD loading was 2.6 kg m−3 d−1. The SBR was seeded with flocculating sludge from a SBR with an 1 h settle time, but granules developed within 4 days by reducing the settle time to 2 min. The SBR cycle also had 120 min mixed (anaerobic) fill, 220 min aerated react, and 18 min draw/idle. The granules had a mean diameter of 1.7 mm, a specific gravity of 1.035, a density of 62 g VSS l−1, a zone settling velocity (ZSV) of 51 m h−1, and a sludge volume index (SVI) of 22 ml g−1. Without optimizing process conditions, removal of COD and P were over 98%, and removal of N and VSS were over 97%. Nitrification and denitrification occurred simultaneously during react. The results indicate that conventional SBRs treating wastewaters with flocculating sludge can be converted to granular SBRs by reducing the settle time.  相似文献   

16.
Law Y  Lant P  Yuan Z 《Water research》2011,45(18):5934-5944
Ammonia-oxidising bacteria (AOB) are a major contributor to nitrous oxide (N2O) emissions during nitrogen transformation. N2O production was observed under both anoxic and aerobic conditions in a lab-scale partial nitritation system operated as a sequencing batch reactor (SBR). The system achieved 55 ± 5% conversion of the 1 g NH4+-N/L contained in a synthetic anaerobic digester liquor to nitrite. The N2O emission factor was 1.0 ± 0.1% of the ammonium converted. pH was shown to have a major impact on the N2O production rate of the AOB enriched culture. In the investigated pH range of 6.0-8.5, the specific N2O production was the lowest between pH 6.0 and 7.0 at a rate of 0.15 ± 0.01 mg N2O-N/h/g VSS, but increased with pH to a maximum of 0.53 ± 0.04 mg N2O-N/h/g VSS at pH 8.0. The same trend was also observed for the specific ammonium oxidation rate (AOR) with the maximum AOR reached at pH 8.0. A linear relationship between the N2O production rate and AOR was observed suggesting that increased ammonium oxidation activity may have promoted N2O production. The N2O production rate was constant across free ammonia (FA) and free nitrous acid (FNA) concentrations of 5-78 mg NH3-N/L and 0.15-4.6 mg HNO2-N/L, respectively, indicating that the observed pH effect was not due to changes in FA or FNA concentrations.  相似文献   

17.
The contribution of volatilization, sorption and transformation to the removal of 16 Pharmaceutical and Personal Care Products (PPCPs) in two lab-scale conventional activated sludge reactors, working under nitrifying (aerobic) and denitrifying (anoxic) conditions for more than 1.5 years, have been assessed. Pseudo-first order biological degradation rate constants (kbiol) were calculated for the selected compounds in both reactors. Faster degradation kinetics were measured in the nitrifying reactor compared to the denitrifying system for the majority of PPCPs. Compounds could be classified according to their kbiol into very highly (kbiol > 5 L gSS−1 d−1), highly (1 < kbiol < 5 L gSS−1 d−1), moderately (0.5 < kbiol < 1 L gSS−1 d−1) and hardly (kbiol < 0.5 L gSS−1 d−1) biodegradable.Results indicated that fluoxetine (FLX), natural estrogens (E1 + E2) and musk fragrances (HHCB, AHTN and ADBI) were transformed to a large extent under aerobic (>75%) and anoxic (>65%) conditions, whereas naproxen (NPX), ethinylestradiol (EE2), roxithromycin (ROX) and erythromycin (ERY) were only significantly transformed in the aerobic reactor (>80%). The anti-depressant citalopram (CTL) was moderately biotransformed under both, aerobic and anoxic conditions (>60% and >40%, respectively). Some compounds, as carbamazepine (CBZ), diazepam (DZP), sulfamethoxazole (SMX) and trimethoprim (TMP), manifested high resistance to biological transformation.Solids Retention Time (SRTaerobic >50 d and <50 d; SRTanoxic >20 d and <20 d) had a slightly positive effect on the removal of FLX, NPX, CTL, EE2 and natural estrogens (increase in removal efficiencies <10%). Removal of diclofenac (DCF) in the aerobic reactor was positively affected by the development of nitrifying biomass and increased from 0% up to 74%. Similarly, efficient anoxic transformation of ibuprofen (75%) was observed after an adaptation period of 340 d. Temperature (16-26 °C) only had a slight effect on the removal of CTL which increased in 4%.  相似文献   

18.
Aerobic degradation of sulfanilic acid using activated sludge   总被引:1,自引:0,他引:1  
This paper evaluates the aerobic degradation of sulfanilic acid (SA) by an acclimatized activated sludge. The sludge was enriched for over three months with SA (>500 mg/L) as the sole carbon and energy source and dissolved oxygen (DO, >5 mg/L) as the primary electron acceptor. Effects of aeration rate (0-1.74 L/min), DO concentration (0-7 mg/L) and initial SA concentration (104-1085 mg/L) on SA biodegradation were quantified. A modified Haldane substrate inhibition model was used to obtain kinetic parameters of SA biodegradation and oxygen uptake rate (OUR). Positive linear correlations were obtained between OUR and SA degradation rate (R2 ≥ 0.91). Over time, the culture consumed more oxygen per SA degraded, signifying a gradual improvement in SA mineralization (mass ratio of O2: SA at day 30, 60 and 120 were 0.44, 0.51 and 0.78, respectively). The concomitant release of near stoichiometric quantity of sulphate (3.2 mmol SO42− released from 3.3 mmol SA) and the high chemical oxygen demand (COD) removal efficacy (97.1%) indicated that the enriched microbial consortia could drive the overall SA oxidation close to a complete mineralization. In contrast to other pure-culture systems, the ammonium released from the SA oxidation was predominately converted into nitrate, revealing the presence of ammonium-oxidizing bacteria (AOB) in the mixed culture. No apparent inhibitory effect of SA on the nitrification was noted. This work also indicates that aerobic SA biodegradation could be monitored by real-time DO measurement.  相似文献   

19.
The effect of ozonation on the biodegradability of 100-ppm aqueous solutions of 2,4-dichlorophenol has been investigated. BOD at 5, 10 and 21 days, BOD/COD and BOD/TOC ratios and the average oxidation state are presented. Biodegradability measured as BOD5/COD ratio was increased from 0 of the original solution to 0.25 at the moment of removing all the initial compound (corresponding to an ozone dose of 0.12 g L−1, 0.48 for BOD21/COD ratio). To test the effect of this pre-treatment, the biological oxidation of these pre-ozonated solutions was performed in two semi-continuous stirred tank reactors, one with non-acclimated sludge and one with acclimated-to-phenol sludge. The study showed that the TOC content of the pre-treated solution could be removed up to 68% by an aerobic biological treatment as well as co-digested with municipal wastewater (TOC removal up to 82%), with similar operating retention times to a municipal wastewater plant (12-24 h). Kinetic studies based on Monod model have also been carried out. Pseudo-first-order kinetic constants were found to be in the range of 0.5-0.8 L g TVSS−1 h−1.  相似文献   

20.
The feasibility of long-term (>3 years), low-temperature (4-15 °C) and anaerobic bioreactor operation, for the treatment of acidified wastewater, was investigated. A hybrid, expanded granular sludge bed-anaerobic filter bioreactor was seeded with a mesophilic inoculum and employed for the mineralization of moderate-strength (3.75-10 kg chemical oxygen demand (COD) m−3) volatile fatty acid-based wastewaters at 4-15 °C. Bioprocess performance was assessed in terms of COD removal efficiency (CODRE), methane biogas concentration, and yield, and biomass retention. Batch specific methanogenic activity assays were performed to physiologically characterise reactor biomass.Despite transient disimprovements, CODRE and methane biogas concentrations exceeded 80% and 65%, respectively, at an applied organic loading rate (OLR) of 10 kg COD m−3 d−1 between 9.5 and 15 °C (sludge loading rate (SLR), 0.6 kg COD kg[VSS]−1 d−1). Over 50% of the granular sludge bed was lost to disintegration during operation at 9.5 °C, warranting a reduction in the applied OLR to 3.75-5 kg COD m−3 d−1 (SLR, c. 0.4-0.5 kg COD kg[VSS]−1 d−1). From that point forward, remarkably stable and efficient performance was observed during operation at 4-10 °C, with respect to CODRE (≥82%), methane biogas concentration (>70%) and methane yields (>4 lMethane d−1), suggesting the adaptation of our mesophilic inoculum to psychrophilic operating conditions.Physiological activity assays indicated the development of psychroactive syntrophic and methanogenic populations, including the emergence of putatively psychrophilic propionate-oxidising and hydrogenotrophic methanogenic activity. The data suggest that mesophilic inocula can physiologically adapt to sub-optimal operational temperatures: treatment efficiencies and sludge loading rates at 4 °C (day, 1243) were comparable to those achieved at 15 °C (day 0). Furthermore, long-term, low-temperature bioreactor operation may act as a selective enrichment for psychrophilic methanogenic activity from mesophilic inocula. The observed efficient and stable bioprocess performance highlights the potential for long-term, low-temperature bioreactor operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号