共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
翁妙凤 《小型微型计算机系统》2001,22(8):971-972
对镇定一嵌入在Lorenz混沌吸引子内的不稳定平衡点上的混沌轨道提出了一种利用进化RBF网控制混沌系统的新方法,采用了基于两层编码改进进化规划(IEP)的RBF网学习算法,要以同时确定网络的拓扑结构和参数,仿真结果表明本文控制Lorenz混沌响应速度快,控制精度高。 相似文献
3.
混沌系统的RBF神经网络控制设计 总被引:7,自引:0,他引:7
对镇定一嵌入在混沌吸引子内的不稳定平衡点上的混沌轨道提出了一种新的混沌系统神经网络补偿控制方法,探讨了用神经网络估计混沌系统不确定性的途径,给出了神经补偿控制器的设计方法,并证明了闭环系统的稳定性。以三阶Lorenz方程为例给出了仿真结果。 相似文献
4.
基于RBF神经网络的混沌时间序列预测 总被引:2,自引:0,他引:2
本文提出将径向基函数(RBF)神经网络应用于混沌时间序列的预测,设计了一个三层RBF网络结构.对于三个典型的混沌系统,在不同的噪声水平下,采用RBF网络模型分别进行了预测研究.仿真结果表明,采用RBF网络进行混沌时间序列的预测能够取得比现有其它方法更好的效果. 相似文献
5.
6.
非线性系统的神经网络学习控制 总被引:2,自引:0,他引:2
主要控制了一类非线性系统的神经网络学习控制问题。讨论了以迭代学习方式训练的神经网络学习控制器,在满足一定条件,可以实现一定时间内的系统输出跟踪。 相似文献
7.
9.
10.
11.
This paper focuses on designing an adaptive radial basis function neural network (RBFNN) control method for a class of nonlinear systems with unknown parameters and bounded disturbances. The problems raised by the unknown functions and external disturbances in the nonlinear system are overcome by RBFNN, combined with the single parameter direct adaptive control method. The novel adaptive control method is designed to reduce the amount of computations effectively. The uniform ultimate boundedness of the closed-loop system is guaranteed by the proposed controller. A coupled motor drives (CMD) system, which satisfies the structure of nonlinear system, is taken for simulation to confirm the effectiveness of the method. Simulations show that the developed adaptive controller has favorable performance on tracking desired signal and verify the stability of the closed-loop system. 相似文献
12.
提出了一种径向基函数网络(Radial basis function networks, RBFNs)与偏鲁棒M-回归(Partial robust M-regression, PRM)相结合的非线性PRM (Nonlinear PRM, NLPRM)建模方法, 用以解决鲁棒非线性系统建模问题. 该方法首先通过RBF变换获得扩展的输入数据矩阵; 接下来PRM算法通过反复迭代计算, 自适应地为变换后的数据分配不同的连续权值, 用以克服离群点对模型的影响. 本文通过仿真实验, 验证了方法的有效性; 并将其应用于湿法冶金萃取过程萃余液pH值软测量建模问题, 获得了相比于偏最小二乘法(Partial least squares, PLS)、PRM以及RBF-PLS方法更高的预测精度. 相似文献
13.
In this paper, we extend the deterministic learning theory to sampled-data nonlinear systems. Based on the Euler approximate model, the adaptive neural network identifier with a normalized learning algorithm is proposed. It is proven that by properly setting the sampling period, the overall system can be guaranteed to be stable and partial neural network weights can exponentially converge to their optimal values under the satisfaction of the partial persistent excitation (PE) condition. Consequently, locally accurate learning of the nonlinear dynamics can be achieved, and the knowledge can be represented by using constant-weight neural networks. Furthermore, we present a performance analysis for the learning algorithm by developing explicit bounds on the learning rate and accuracy. Several factors that influence learning, including the PE level, the learning gain, and the sampling period, are investigated. Simulation studies are included to demonstrate the effectiveness of the approach. 相似文献
14.
基于神经网络的非线性观测器及在线故障检测 总被引:1,自引:0,他引:1
提出一种基于径向基函数神经网络的非线性观测器的设计方法,并将其应用于复杂非线性系统的故障检测与隔离。该方法将神经网络离线学习与在线学习相结合,获取系统输入输出的非线性动力学特性,进而实时计算出残差并进行逻辑判决,可显著提高故障检测的快速性、鲁棒性及准确率。最后,针对非线性同步交流电机的结构损伤故障进行了仿真,结果表明本文所提方法的有效性。 相似文献
15.
16.
17.
提出一种基于径向基函数(RBF)神经网络的动力系统Lyapunov指数计算方法,设计了一个RBF网络结构,推导了基于RBF网络的Lyapunov指数计算公式.仿真实验表明,与其它现有方法相比,此方法计算精度较高,收敛速度较快,而且只需要较少的样本数据量.本方法能更准确、更快速地计算动力系统的Lyapunov指数. 相似文献
18.
An adaptive nonlinear control strategy based on networks of compactly supported radial basis functions is proposed. The local influence of the basis functions allows efficient on-line adaptation that is performed using a gradient law, and new basis functions are added to the network only when new regions in state space are encountered and the prediction error exceeds a pre-specified tolerance. The approximate model is used to construct an input-output linearizing control law. The adaptive control strategy is applied to a nonlinear chemical reactor model. 相似文献
19.
逆系统方法的径向基函数网络实现 总被引:12,自引:0,他引:12
研究采用径向基函数网络(RBFN)构造系统逆控制器的工程实现问题,同时给出该直接逆动态控制器存在的充分条件。为进一步改善基于RBFN的直接逆动态控制器的动态性能,对该伪逆系统进行PID综合。仿真研究表明,以RBFN拟合对象逆过程的PID综合控制策略不仅能改善系统的动态性能,而且具有良好的参数鲁棒性能。 相似文献
20.
《Advanced Robotics》2013,27(4):369-383
In this paper, we present a decentralized neural network (NN) adaptive technique for control of robot manipulators in the presence of unknown non-linear functions. Radial basis function NNs are used to approximate the non-linear functions to include the case of both parametric and dynamic uncertainty in each subsystem. The robustifying terms are added to the controllers to overcome the effects of the interconnections. The stability can be guaranteed by using a rigid proof. Finally, simulation is given to illustrate the effectiveness of the proposed algorithm. 相似文献