共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
翁妙凤 《小型微型计算机系统》2001,22(8):971-972
对镇定一嵌入在Lorenz混沌吸引子内的不稳定平衡点上的混沌轨道提出了一种利用进化RBF网控制混沌系统的新方法,采用了基于两层编码改进进化规划(IEP)的RBF网学习算法,要以同时确定网络的拓扑结构和参数,仿真结果表明本文控制Lorenz混沌响应速度快,控制精度高。 相似文献
3.
4.
5.
混沌系统的RBF神经网络控制设计 总被引:7,自引:0,他引:7
对镇定一嵌入在混沌吸引子内的不稳定平衡点上的混沌轨道提出了一种新的混沌系统神经网络补偿控制方法,探讨了用神经网络估计混沌系统不确定性的途径,给出了神经补偿控制器的设计方法,并证明了闭环系统的稳定性。以三阶Lorenz方程为例给出了仿真结果。 相似文献
6.
基于RBF神经网络的混沌时间序列预测 总被引:2,自引:0,他引:2
本文提出将径向基函数(RBF)神经网络应用于混沌时间序列的预测,设计了一个三层RBF网络结构.对于三个典型的混沌系统,在不同的噪声水平下,采用RBF网络模型分别进行了预测研究.仿真结果表明,采用RBF网络进行混沌时间序列的预测能够取得比现有其它方法更好的效果. 相似文献
7.
提出一种基于预测控制的神经网络控制方法,将模型未知时的混沌运动控制到不稳定的不动点(UFP)处,该控制系统不需要UFP的位置及其局性态等知识,它包括观测器、带反馈校正的神经网络在预测器和在线训练的神经网络控制器,其方法简便,收敛速度比现有同类方法快得多,同时还分析了控制系统的稳定性,并证明了神经网络控制器的收敛性,理论推导和仿真结果都表明了该方法的有效性。 相似文献
8.
9.
非线性系统的神经网络学习控制 总被引:2,自引:0,他引:2
主要控制了一类非线性系统的神经网络学习控制问题。讨论了以迭代学习方式训练的神经网络学习控制器,在满足一定条件,可以实现一定时间内的系统输出跟踪。 相似文献
10.
11.
12.
13.
14.
基于RBF网络的信息融合在机器人足球中的应用 总被引:2,自引:2,他引:2
机器人足球系统是综合性的人工智能研究平台。决策在机器人足球比赛中起着至关重要的作用。通过对机器人足球系统的分析,论证了信息融合应用于机器人足球系统的可行性。针对机器人足球比赛决策中的实际问题,提出了基于径向基函数(RBF)神经网络的信息融合方法,并设计了足球机器人射门实验。实验结果证明该方法有助于提高整个系统决策的准确性。 相似文献
15.
This paper focuses on designing an adaptive radial basis function neural network (RBFNN) control method for a class of nonlinear systems with unknown parameters and bounded disturbances. The problems raised by the unknown functions and external disturbances in the nonlinear system are overcome by RBFNN, combined with the single parameter direct adaptive control method. The novel adaptive control method is designed to reduce the amount of computations effectively. The uniform ultimate boundedness of the closed-loop system is guaranteed by the proposed controller. A coupled motor drives (CMD) system, which satisfies the structure of nonlinear system, is taken for simulation to confirm the effectiveness of the method. Simulations show that the developed adaptive controller has favorable performance on tracking desired signal and verify the stability of the closed-loop system. 相似文献
16.
17.
18.
许碧荣 《计算机工程与应用》2013,49(20):82-86
利用非线性函数耦合混沌同步方法,讨论分数阶Chen混沌系统的同步问题,分析初始值和耦合系数的选择对于实现混沌同步的影响。并将该方法推广,实现规则网络的混沌同步。通过数值模拟实验,验证所提出方法的有效性。 相似文献
19.
This paper introduces a new decentralized adaptive neural network controller for a class of large-scale nonlinear systems with unknown non-affine subsystems and unknown interconnections represented by nonlinear functions. A radial basis function neural network is used to represent the controller’s structure. The stability of the closed loop system is guaranteed through Lyapunov stability analysis. The effectiveness of the proposed decentralized adaptive controller is illustrated by considering two nonlinear systems: a two-inverted pendulum and a turbo generator. The simulation results verify the merits of the proposed controller. 相似文献