首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 60 毫秒
1.
中低温热水发电通常选用有机朗肯循环系统。本文对ORC系统的特点、工质和参数的选择进行了介绍,并对系统进行效率分析。针对以80℃-150℃热水为热源的有机朗肯循环(ORC)发电系统,以?效率为评价指标,分析了循环工质为R134a、R123和R245fa时的系统。得出,R245fa是较为理想的工质。  相似文献   

2.
郭初 《制冷》2022,(2):65-69
本文建立了以R245fa为循环工质回收130℃余热的有机朗肯循环(ORC)发电系统,建立了系统各部件的能量和?分析模型,分析了不同冷凝压力、蒸发压力对系统各个部件的?损失和?效率、热效率的影响。结果表明:(1)蒸发压力增大:系统热效率和?效率提高,蒸发器?损失下降,冷凝器?损失增加,系统总?损失减少;(2)冷凝压力增大:系统热效率和?效率下降,蒸发器?损失下降,冷凝器?损失增加,系统总?损失增加。研究结果对指导ORC余热发电系统优化、实现提高系统整体性能、提高系统效率有重要意义。  相似文献   

3.
周然  韩吉田 《冷藏技术》2013,(1):11-14,10
有机朗肯循环(OrganicRankineCycle,ORC)是在传统朗肯循环中采用有机工质(~IRl13,R123等)代替水推动膨胀机做功的循环,本文根据集总参数法和能量守恒定律建立有机朗肯循环系统的数学模型,运用软件工程方程求解器(EngineeringEquationSolver,EES)进行仿真研究,得到不同工况下有机朗肯循环系统热力特性的变化规律。研究结果表明,提高系统蒸发压力、降低系统冷凝压力以及选择效率尽可能高的膨胀机,可以提高有机朗肯系统循环热效率。仿真计算结果与实验数据二者吻合较好,表明所发展的数学模型可以满足有机朗肯循环热力系统仿真的要求。  相似文献   

4.
有机朗肯循环模拟及涡旋式膨胀机的性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
近些年来,太阳能作为一种可再生能源受到了广泛的关注。其中利用太阳能集热器实现100℃以下高效的热量回收,是一种普遍且有效的太阳能利用方式。采用有机朗肯循环与100℃的低温热源相结合进行发电,目前也逐渐受到了研究人员的关注。考虑到膨胀机是有机朗肯循环的核心部件,本文选择了R600制冷剂作为ORC系统的工质,对其进行了计算以及热力学性能分析。同时搭建了利用压缩空气来驱动的涡旋式膨胀机性能研究的实验台。从ORC的理论分析得,当热源温度为78~97℃,环境温度为30℃,可以获得0.7~1kW的电量,效率为0.84~0.89。利用压缩空气模拟R600,当温度从75℃变化到95℃,对应的压力从0.8MPa变化到1.2MPa,膨胀机出口压力控制在0.28MPa,等熵效率维持在0.7左右。膨胀机的功电转化效率随着膨胀机理想输出功的增加而降低。  相似文献   

5.
李鹏 《中国科技博览》2013,(16):634-634
有机朗肯循环发电系统对于中低温余热的有效利用发挥了巨大的作用,但是有机朗肯循环系统的工质选择依旧是中低温余热利用中存在的问题。文章提出优选工质的条件,并通过对十种低沸点有机工质的性能对比分析得出R141b最适宜作为此温度的余热回收工质,综合性能高于其他工质,对于有机朗肯循环添加回热会大大提高系统效率。  相似文献   

6.
有机朗肯循环是将低温余热转变为电能,进而提高总体能量利用率,减少污染排放的有效途径之一。本文提出了一种新的排汽回热再热式ORC,根据热力学第一定律和第二定律,利用EES软件仿真模拟对新ORC进行热力性能分析,并与基本ORC、排汽回热式ORC和再热式ORC进行相同条件下的性能对比,得出了新ORC具有最佳热力性能。通过研究再热压力、透平进口压力、透平进口温度和透平出口压力变化对新ORC性能的影响,得出了新ORC热力性能的优化方向。  相似文献   

7.
有机朗肯循环发电系统中的能量主要损失在换热设备中。换热设备性能对其发电效率有着直接的影响。为提高有机朗肯循环发电系统的经济性,以最小电力生产成本为目标函数,建立经济性模型,并以实际搭建的有机朗肯循环发电系统对模型进行优化,对安装预热器和过热器的经济性进行分析。研究结果表明:电力生产成本主要受热源介质流量、冷却水流量、系统发电功率、蒸发器节点温差及蒸发温度的影响;在有机朗肯循环发电系统中,尤其是在中大型发电系统中,预热器的安装是经济可靠的;过热器的安装对电力生产成本的增加值较小,而其可提高系统的稳定性、延长系统的使用寿命。  相似文献   

8.
利用有机朗肯循环回收工业生产废水中的热量进行发电,不但节约能源而且减少废热对环境的热污染,有利于实现节能减排。本文针对某一化工厂95℃的热水作为热源,分析R134a和R245fa在不同蒸发温度下的能源利用效率、净发电功率、工质泵扬程以及单位净发电功率所需的膨胀机排量,并指出在实现利用余热发电可行性的问题上需要考虑设备投资、关键设备(工质泵)、经济效益等问题。  相似文献   

9.
有机朗肯循环(Organic Rankine Cycle,简称ORC)是利用低沸点的有机物作为工质推动透平做功的朗肯循环,ORC技术能够有效的利用低品位热能。太阳能是一种清洁、普遍存在的、巨大的低品位能源。ORC技术与太阳能结合,对节能减排,降低化石能源依赖,优化能源供给结构具有重要的现实意义。本文在分析总结国内外相关研究成果的基础上,分析了太阳能集热系统的主要影响因素以及有机朗肯循环系统中的关键因素对于循环性能的影响。  相似文献   

10.
本文以90~150℃低温余热热源的回收利用为前提,搭建了有机朗肯循环(ORC)发电系统实验平台。通过调节透平膨胀机入口压力,改变蒸发温度,实验研究蒸发温度对膨胀机性能和系统性能的影响。结果表明:当蒸发温度从76℃升高到84℃时,膨胀机入口温度逐渐升高,使膨胀机转速增大约9.11%,膨胀机输出功率增大1.26 kW,最高等熵效率为80.6%;系统循环净功、热效率、不可逆损失及效率均随蒸发温度的升高呈增大趋势,分别增大了33.9%、26.7%、15.4%、27%。  相似文献   

11.
The organic Rankine cycle( ORC) is an effective way to recycle low temperature exhaust heat but pump for the ORC has several disadvantages such as great difficulty in manufacturing,easily-invited cavitations,low efficiency and high cost. Gas-liquid two-phase injector is a device without moving parts,in which steam is used to drive cold liquid from a pressure lower than the primary steam to a pressure higher than the primary steam. In this paper,the mechanical circulation pump was replaced with a gas-liquid injector. The effect of the evaporate temperature for the system was studied with the organic fluid R123. While this novel ORC can not only improves the energy utilization,but also be suitable for some occasions without power.  相似文献   

12.
陈然  刘强  蒙冬玉 《发电技术》2020,41(2):190-197
有机朗肯循环(organic Rankine cycle,ORC)是利用中低温地热能(< 150℃)发电的主要途径,在实际运行中,非共沸工质往往会冷凝至过冷状态。分析了冷凝过冷度对非共沸工质ORC热力性能的影响,建立了ORC、内回热(internal heat exchanger,IHE)ORC的热力学模型,以净输出功最大为目标函数优化了工质的蒸发压力,并开展了系统的㶲分析。结果表明:过冷度影响了工质与冷源换热流体间的温度匹配特性,受夹点温差的限制,随着过冷度的增加,工质的冷凝压力上升;过冷度亦改变了预热器和蒸发器的热量分摊,随着过冷度的增加,最佳蒸发压力亦上升。混合工质异丁烷/异戊烷的质量配比为0.4:0.6时,净输出功受过冷度的影响最大,当过冷度为2℃时,净输出功下降了4.36%。IHE回收膨胀机排汽的余热,提高了预热器入口温度,可提高过冷ORC系统净输出功0.55%。过冷度增大了冷凝器的㶲损失;采用内回热冷凝器的㶲损失降低了24.7%。  相似文献   

13.
研究了采用有机朗肯循环(ORC)的低温余热发电技术。为了有效利用煤化工项目的低温凝液余热资源,在计算工艺凝液余热容量的基础上确定了合理的ORC余热利用方案,利用ORC余热发电机组代替原有的循环水冷却器,以便在完成对工艺凝液冷却的同时实现余热资源发电收益。分析结果表明:该余热发电项目的净发电功率为516k W,节约原有冷却塔循环水泵消耗的功率为110k W,年收益电量达500.8万度,年节约标准煤1812.4吨。  相似文献   

14.
分布式冷热电联供(combined cooling,heating and power,CCHP)系统是一种小型、临近用户的新型供能方式,可避免能量长距离传输过程损失,同时具有灵活、高效、环保特点,成为大规模、集中式供能方式的重要补充。中小型发电装置是分布式冷热电联供系统的核心,制冷和制热也都围绕发电装置余热展开。对适合分布式冷热电联供系统的2类中小型发电装置的基本工作原理、热力性能和相关研究进展进行综述。一类是以化石燃料为能源输入的中小型发电装置,包括微型燃气轮机、燃气内燃机、小型燃气轮机和燃料电池;另一类是以发电装置余热或太阳能集热等其他热源为能源输入的中小型发电装置,包括有机朗肯循环、正逆耦合循环、热声发电机等。最后,对2类中小型发电装置的优缺点进行对比分析,为分布式供能系统的发电装置选型、系统方案设计等提供参考。  相似文献   

15.
工质性质是影响有机朗肯循环(organic Rankine cycle,ORC)系统性能的重要因素之一。在不同热源温度下,对采用R601、R245fa作为组分的9种不同质量配比工质的ORC系统热力性和经济性进行计算,然后采用灰色关联法对系统性能进行分析及综合评价,并与纯工质的性能进行对比。研究表明,混合工质系统的热力学指标与温度滑移大小近似成反比。当温度滑移大于5K时,纯工质性能更优,且经济性也优于混合工质系统。综合来看,热源温度一定时,灰色关联度随着蒸发温度的升高呈现先增大后减小的趋势;混合工质R601/R245fa(0.1/0.9)的温度滑移最小,其性能也最优。采用R601和R245fa混合作为工质的系统在热源温度为160℃时,灰色关联度最大,系统性能更优。  相似文献   

16.
An experimental apparatus for assessing the thermal stability threshold of refrigerant working fluids is described and results for R-134a (1,1,1,2-tetrafluoroethane), R141b (1,1-dichloro-1-fluoroethane), R-13I1 (trifluoromethyl iodide), R-7146 (sulphur hexafluoride), R-125 (pentafluoroethane) are presented. The information is a concern for the design of refrigeration systems, high temperature heat pumps and Organic Rankine Cycles (ORC), for which the above refrigerants are proposed. The method aims to identify a maximum temperature for plant operation in contact with stainless steel and involves the evaluation of four indicators: (1) pressure variation while the fluid is maintained at set temperature; (2) saturation pressure comparison after heat treatment; (3) chemical analysis; and (4) vessel visual inspection after the test session. The highest temperatures at which no evident degradation occured are: 368°C for R-134a; 102°C for R-13I1; 90°C for R-141b; 204°C for R-7146; and 396°C for R-125.  相似文献   

17.
A shortage of fossil energy sources boosts the utilization of renewable energy. Among numerous novel techniques, recovering energy from low-grade heat sources through power generation via organic Rankine cycles (ORCs) is one of the focuses. Properties of working fluids are crucial for the ORC’s performance. Many studies have been done to select proper working fluids or to design new working fluids. However, no researcher has systematically investigated the relationship between molecular structures and thermal efficiencies of various working fluids for an ideal ORC. This paper has investigated the interrelations of molecular structures, molecular entropies, and thermal efficiencies of various working fluids for an ideal ORC. By calculating thermal efficiencies and molecular entropies, we find that the molecular entropy is the most appropriate thermophysical property of a working fluid to determine how much energy can be converted into work and how much cannot in a system. Generally speaking, working fluids with low entropies will generally have high thermal efficiency for an ideal ORC. Based on this understanding, the direct interrelations of molecular structures and entropies provide an explicit interrelation between molecular structures and thermal efficiencies, and thus provide an insightful direction for molecular design of novel working fluids for ORCs.  相似文献   

18.
The combined power and cooling cycles driven by waste heat and renewable energy can provide different kinds of energy forms and achieve a higher thermodynamic efficiency. However, only a few researchers have focused on the improvement of temperature matching between the heat source and working fluid. This paper proposes a transcritical power and ejector refrigeration cycle (TPERC) to improve temperature matching between the heat source and working fluid. Based on the modelling of the TPERC system, a comparison of working fluids and the effects of system parameters on the cooling capacity, work output, thermal efficiency and exergy efficiency are discussed. The results show that of the seven working fluids selected, R1234ze has the largest thermal efficiency and exergy efficiency, principally due to having the highest critical temperature. At the identical turbine back pressure, condensing temperature and evaporation temperature, the turbine inlet temperature and its corresponding generation pressure have little impact on thermal efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号