首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 209 毫秒
1.
以粉煤灰和石墨为原料,采用碳热还原氮化法在一定的工艺条件下合成出不同结构形式的β-Sialon材料.以XRD,SEM,EDS等手段,研究了碳含量,合成温度,保温时间等工艺参数对合成产物中β-Sialon中z值的影响,并分析了β-Sialon的形成过程.研究结果表明,当试样中碳过量50%,在1420℃下保温4h以上,β-Sialon相均以Si4Al2O2N6(z=2)和Si3Al3O3N5(z=3)共同存在,保温时间的延长导致了Si4Al2O2N6的相对含量增加,Si3Al3O3N5有所减少;当试样中碳过量10%,并在1420℃保温6h时,合成样品中 β-Sialon相的主要存在形式为Si5AlON7(z=1);当碳过量50%,在1400℃和1450℃下保温6h时,以上三种z值的β-Sialon相可共同形成.β-Sialon的微观形貌以杆状晶须为主,其在反应初期主要为串珠状晶须,随着氮化反应的进行,β-Sialon杆状晶须逐渐形成,其主要相组成为Si4Al2O2N6和Si3 Al3O3N5.  相似文献   

2.
利用煤矸石制备复合耐火材料是实现煤矸石高值利用的有效途径之一.以山西平朔煤矸石为研究对象,利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)分别研究了1200~1500 ℃氩气(Ar)和氮气(N2)气氛下煤矸石中矿物质的碳热还原反应情况,并通过变换两种气体通入次序,研究了气氛通入次序对矿物质碳热还原反应的影响.结果显示,只通入Ar时,高温样品中的莫来石在1300 ℃时开始发生碳热反应生成碳硅石(SiC);只通入N2时,莫来石在1300 ℃时发生碳热还原氮化反应生成β-Sialon相(Si5AlON7)和刚玉相(Al2O3);当先通入Ar并停留1 h后通入N2停留2 h时,样品中生成的碳硅石在通入N2后转化为β-Sialon相,而且中间体碳硅石的生成能够明显促进莫来石向β-Sialon相的转化.当煤矸石中碳含量较低时,热处理过程中难以同时生成SiC相和Sialon相.高温下煤矸石样品中β-Sialon相的生成使样品表面的棒状颗粒增多.  相似文献   

3.
选用低品位的铝土矿(Al2O3含量为68wt%)利用复合还原剂碳/硅、碳/铝、铝/硅还原氮化合成β-Sialon.计算试样烧成后的质量变化率,利用检测仪器XRD、SEM、EDS,化学分析法,研究了三种复合还原剂还原氮化低品位铝土矿合成β-Sialon的反应过程、显微结构和相对含量.结果表明:利用三种复合还原剂还原氮化合成β-Sialon材料的机理、生成β-Sialon的相对含量、结晶形貌、生产成本均不同;反应基本结束的温度均为1500℃,生成z值为3左右β-Sialon;工业生产中利用碳/硅复合还原氮化低品位铝土矿合成β-Sialon材料较理想.  相似文献   

4.
碳热还原氮化粉煤灰的研究   总被引:1,自引:0,他引:1  
以粉煤灰加入炭黑为主要原料,在氮气气氛下对粉煤灰进行了碳热还原氮化研究.研究了碳加入量、合成反应温度、保温时间和Fe2O3含量等因素对生成物物相的影响.实验结果表明:选用理论加入碳含量的样品,在反应温度为1350℃、保温9h条件下,产物中含有较多β-Sialon相;而且经磁选除铁后的粉煤灰较未除铁粉煤灰在反应温度为1400℃、保温9h条件下,碳化还原氮化产物中15R相含量明显增多.  相似文献   

5.
在热力学分析的基础上,以用后Al2O3-SiC-C铁沟料、煤矸石和活性炭为主要原料,采用碳热还原氮化法合成了β-SiAlON。详细讨论了合成温度(1 723和1 823 K)、活性炭加入量(理论需碳量、过量15%、过量30%和过量45%)、Si与Al元素摩尔比(分别为3:3,3.5:2.5和4:2)和煤矸石种类(低碳煤矸石和高碳煤矸石)对合成β-SiAlON的影响,并采用XRD、SEM和EDS等对合成产物进行分析。结果表明:(1)当合成温度由1 723 K增加到1 823 K时,合成后试样中β-SiAlON相含量增加,O’-SiAlON和α-Al2O3的含量降低;(2)加入过量的活性炭有利于合成后试样中β-SiAlON相含量的增加;(3)随着Si、Al元素摩尔比的增大,合成后试样中β-SiAlON相含量增多;(4)采用低碳煤矸石的试样中β-SiAlON相含量高于采用高碳煤矸石的,其原因是配料时前者中配入的活性炭更多,而活性炭的活性较高,更有利于促进碳热还原氮化反应的进行。  相似文献   

6.
O’-Sialon-ZrO_2-C系材料抗Al_2O_3沉积性能   总被引:6,自引:2,他引:4  
研究了O’-Sialon-ZrO2-C系材料的抗Al2O3沉积性能,并与Al2O3-C质材料进行了对比。结果表明:O’-Sialon-ZrO2-C系材料的抗Al2O3沉积性能明显优于Al2O3-C质材料,其抗Al2O3沉积机理主要为浇钢温度下O’-Sialon与钢液中夹杂的Al2O3接触并反应生成了低熔相而被钢水冲刷掉,从而阻碍了Al2O3在材料表面的沉积附着。O’-Sialon-ZrO2-C系材料的抗侵蚀能力随材料中ZrO2含量的提高而增强.  相似文献   

7.
在烧结镁砂中加入金属Al粉,单质Si粉和α-Al_2O_3微粉,以Y_2O_3为助烧结剂,经1550℃高温氮化反应可以合成Mg-α-Sialon相。研究了Y_2O_3加入量不同对Mg-α-sialon陶瓷的矿物组成及微观形貌的影响,借助于XRD分析试样中的晶相组成和晶胞参数,采用SEM及EDS对试样断口的微观形貌进行分析与观察。结果表明:随着Y_2O_3含量的提高,Mg-α-Sialon相晶格常数、晶胞体积不断增大。固溶体YAG的形成降低了Mg-α-Sialon的合成温度,促进了氮化反应的进行。当加入5%的Y_2O_3时,Mg-α-Sialon相的晶胞体积达到了最大值0.333430 nm~3,形成了较为完整的棱柱状和板状的晶体结构,试样的氮化率达到了15.12%。  相似文献   

8.
以氧化铝(Al2O3)和石墨(C)为原料,采用碳热还原工艺合成铝氧碳(Al4O4C),借助于X射线衍射仪和场发射扫描电子显微镜研究了加热温度和保温时间对合成铝氧碳(Al4O4C)的影响。结果表明:提高加热温度,可加快Al2O3和C反应生成Al4O4C的反应速率;延长保温时间可增大Al2O3和C反应生成Al4O4C的反应程度。在反应初期主要为固-固反应,Al2O3和C直接接触反应生成Al4O4C和一氧化碳(CO);后期主要为气-固反应,Al2O3和CO气体反应生成Al4O4C和二氧化碳(CO2)。计算得到气-固反应的频率因子和活化能分别为338.66和264.19kJ/mol。  相似文献   

9.
郭艳芹  王永伟 《硅酸盐通报》2013,32(8):1510-1514
分别以复合还原剂碳硅、碳铝还原氮化低品位铝土矿(Al2O3含量为68wt%)制备β-SiAlON.利用XRD、SEM和EDS等检测手段和试样的质量变化率,研究了两种复合还原剂制备β-SiAlON的相变过程、β-SiAlON的相对生成量和微观状态.结果表明:低品位的矾土矿利用复合还原剂可以制造出优良廉价的β-SiAlON材料;碳硅试样的β-SiAlON为O'-SiAlON和Al2O3反应生成;碳铝试样的β-SiAlON为AlN、Si3N4和Al2O3反应生成以及碳直接还原氮化莫来石生成;基本结束的反应温度为1500℃,生成的β-SiAlON为柱状、z值为3左右;复合还原剂碳硅还原氮化制备β-SiAlON相对含量高,结晶形貌好,制备成本低.  相似文献   

10.
Si3N4-Al2O3-CaO系材料烧结性能及反应过程研究   总被引:2,自引:1,他引:2  
《耐火材料》2003,37(3):128-132
以氮化硅、活性氧化铝微粉和纯铝酸钙水泥为原料,研究了在焦炭保护情况下,Si3N4-Al2O3-CaO系材料经1500℃、1600℃和1650℃烧成时的烧结性能和物相变化,同时借助SEM、EDX和XRD等手段对其显微结构和反应过程进行了观察和分析.结果表明,该体系材料的烧结性能与试样的组成和烧成温度有关温度由1500℃升至1600℃,试样体积密度增加,显气孔率降低,但升至1650℃时,试样的体积密度反而下降,显气孔率增加;在同一温度下,试样中Si3N4含量增加,体积密度下降.同时,试样在烧成过程中存在质量变化现象1500℃烧成试样均表现为质量增加,当温度升至1600℃和1650℃时,试样质量又由增加变为减小.根据热力学分析推测,试样烧成过程中存在复杂的化学反应,低于1500℃时,反应Si3N4(s)+3/2CO(g)=3/2Si2N2O(s)+1/2N2(g)+3/2C(s)是试样质量增加的主要机理;高于1500℃时,反应Si3N4(s)+3/2CO(g)=3/2SiC(s)+3/2SiO(g)+2N2(g)是引起质量损失的主要机理.XRD分析显示,烧后试样中除存在刚玉和Si3N4相外,在烧成过程中还发生了物相变化1500℃时出现了钙黄长石相,1600℃时钙黄长石又消失,出现了Ca-α-Sia-lon和β-Sialon,温度升至1650℃时,Ca-α-Sialon又消失,β-Sialon却大量出现于部分试样中.因此可以认为,钙黄长石是铝酸钙水泥中CaO与Si3N4表面的SiO2和Al2O3反应形成的,温度升高时,其与Si3N4进一步反应形成Ca-α-Sialon,1650℃时Ca-α-Sialon消失,可能是在该温度下,试样内部的化学反应导致试样组成偏离Ca-α-Sialon相区;而β-Sialon是Si3N4固溶Al2O3反应形成的,其含量取决于试样中Al2O3、Si3N4的含量及烧成温度.  相似文献   

11.
《Ceramics International》2020,46(2):1836-1843
β-Sialon with whisker-like, columnar, and plate-shaped structures was successfully synthesized with Al2O3–C refractory compositions. In the presence of a catalyst, the preferential growth face of columnar β-Sialon was (100), whereas plate-like β-Sialon preferred (101) and (111). DFT calculations demonstrated that the SiO adsorption energy on the (100), (101), and (111) faces of β-Sialon crystal were –34.95, –52.88, and –45.08 eV, respectively. Therefore, the (101) and (111) faces were more stable in Al-rich β-Sialon. With the increase in catalyst content, the Si-rich Si–Al–O–N liquid phases, which contributed to the generation of columnar β-Sialon, were converted into the Al-rich Al–Si–O–N system that was conducive to the formation of plate-like β-Sialon. Compared to the sample without the catalyst, the CMOR and HMOR of the specimen were increased by 45.07% and 60.47%, respectively, with the addition of Fe2O3. This was attributed to the formation of β-Sialon with a one- or two- dimensional shape.  相似文献   

12.
赵君红  王瑞生 《陶瓷》2011,(5):15-17
ZrO2p(3Y)/BN-SiO2陶瓷复合材料是以h—BN、非晶SiO2、ZrO2粉体为原料烧结而成,随着烧结温度的不同,所得产物的结构性能也会因此改变,笔者从选择原材料着手,通过试验来验证,陶瓷复合材料热震后表面形貌有何不同。  相似文献   

13.
《Ceramics International》2019,45(14):17298-17304
β-Sialon bonded Al2O3–C refractories possess high strength and superior thermal shock performance. In this study, the growth of preferred β-Sialon (Si3Al3O3N5) and its effects on thermo-mechanical properties of Al2O3–C refractories were investigated via simulations and experiments. The results indicate that the additive Fe2O3 contributed to the formation of β-Sialon and helped its column structure become plate-like. Transmission electron microscopy confirmed that the (101) crystal plane was a growth plane of plate-like β-Sialon. The growth mechanism of β-Sialon was suggested by density functional theory; calculation results revealed that the key step for the formation and growth of β-Sialon was the adsorption of the gaseous molecule Al2O on the Si3N4 (101) crystal plane. It was found that the existence of Fe atoms could significantly reduce the adsorption energy. Additionally, Al2O3–C refractories containing plate-like β-Sialon possessed a high cold modulus of rupture and crushing strength, which increased by 40% and 15%, respectively, compared with the specimens containing column β-Sialon. It was also found that the formation of plate-like β-Sialon resulted in significantly better thermal shock resistance for the Al2O3–C refractory specimens, and the residual strength loss ratio of the sintered specimens was only 4% after five thermal shock cycles.  相似文献   

14.
The ultrafine-grained β-Sialon ceramics were fabricated by spark plasma sintering at different temperatures with inorganic Al2O3–Y2O3 and Ti–22Al–25Nb intermetallic powder as composite additives. The research showed that β-Sialon ceramics achieve two-stage sintering densification. Al2O3–Y2O3 inorganic additives promoted the synthesis and densification of β-Sialon ceramics at 1125–1215°C. Ti–22Al–25Nb intermetallic powder diffused Ti and Nb elements at 1240–1425°C, thereby improving the fracture toughness of β-Sialon ceramics. The maximum fracture toughness (∼9.69 MPa m1/2) under 19.6 N was obtained for β-Sialon ceramics sintered at 1600°C.  相似文献   

15.
Ceramic bonding phases of non-oxide whiskers can enhance the hot strength and the thermal shock resistance of Al2O3–C refractories. In this paper, the effect of different metals on the microstructure and thermo-mechanical properties of Al2O3–C refractories has been investigated. Thermodynamic calculation of Al–Si–O–C–N systems shows that Al4C3, AlN, SiC and β-Sialon are stable at elevated temperature. AlN with the shape of short column can be generated in Al2O3–C refractories with metallic Al, which leads to high hot modulus of rupture (HMOR) and poor resistance to thermal shock. SiC whiskers formed in Al2O3–C refractories with metallic Si give rise to low HMOR and good resistance to thermal shock. When metallic Si and Al are added together in the refractories, β-Sialon (z=2) with plane structure can be generated under the action of catalyst (nano-sized Ni). The existence of the catalyst promotes the diffusion of Al and O in Si3N4 crystals and contributes to the generation of plane-shaped β-Sialon. The corresponding HMOR and residual cold modulus of rupture respectively increase to about 20 MPa and 10.3 MPa. The plane-shaped β-Sialon can significantly enhance both hot strength and thermal shock resistance of Al2O3–C refractories.  相似文献   

16.
Columnar β-Sialon bonding phases were in situ synthesised in Al2O3-C refractory composites and their growth mechanism was simulated based on first-principles calculations. The experimental results indicated that the addition of Fe2O3 as a catalyst accelerated the transformation of Si3N4 to β-Sialon, resulting in a well-developed columnar structure. The (100) facet was the primary surface for crystal growth during the transformation process of Si3N4 into β-Sialon. According to first-principles calculations, the surface energy of the (100) facet decreased greatly due to the substitution of (Si, N) pairs with (Al, O). The catalyst could promote the adsorption of gaseous phases on the (100) facet of Si3N4 and decreased the gas adsorption energy of both SiO and Al2O. Owing to the presence of in situ synthesised columnar β-Sialon bonding phases, the residual crushing strength of Al2O3-C refractory composites after 5 thermal shock cycles increased by 25.1%.  相似文献   

17.
《Ceramics International》2021,47(19):27324-27333
In order to reduce the difficulty of preparing binder-less cemented carbide and further broaden its application prospects, tungsten carbide toughened by in situ elongated β-Sialon grains was developed via sintering ball-milled WC and α-Si3N4 powders using Al2O3–ZrO2 as a sintering aid and transformation additive. The two-step spark plasma sintering of the mixture at 1650 °C with dwelling at 1500 °C for 10 min was conducted under 30 MPa uniaxial pressure, and the densification behaviors, phase transformations, mechanical properties, and microstructures of the produced composites were investigated. The addition of Al2O3–ZrO2 reduced the initial temperature of the densification process by approximately 100 °C and its final temperature by 200 °C (compared with the densification temperatures of pure WC and Si3N4 materials) and fully transformed α-Si3N4 to Sialon (Si–Al–O–N) phases. Microstructural characterization data showed that the WC matrix contained homogeneously distributed equiaxed and elongated β-Si5AlON7 grains. The WC composites containing in situ elongated β-Sialon grains exhibited an optimal hardness of 18.93 ± 0.03 GPa and enhanced fracture toughness of 10.43 ± 0.27 MPa m1/2. The toughening mechanism of the β-Sialon phase involved the pull-out of elongated grains and crack bridging.  相似文献   

18.
以焦宝石、活性炭和铝粉为原料并添加Fe2O3后制备了Al4SiC4/Al4O4C复合耐火材料。利用化学分析、X射线衍射和扫描电镜研究了Fe2O3对所制备复合材料的物相组成和显微结构的影响。结果表明:在烧结过程中,从1400℃开始,Fe2O3转变为低熔点物相Fe3Si,产生液相促进Al4SiC4成核、细化晶粒,同时包裹Al4SiC4。此外,未添加Fe2O3的样品中生成的Al4O4C短纤维,Fe2O3的加入使得Al4O4C相变为细小的晶粒。
Abstract:
Al4SiC4/Al4O4C composite refractory was synthesized by using flint clay,activated carbon and aluminum powders as the raw materials and Fe2O3 as the additive. The effects of Fe2O3 on the phase composition and microstructure of Al4SiC4/Al4O4C composite refractory were investigated by chemical analysis,X-ray diffraction and scanning electron microscopy. The results show that Fe2O3 transforms into a low melting point phase of Fe3Si above 1 400 ℃,which leads to generate liquid phase and promote the nu-cleation and grain refinement of Al4SiC4 phase. Fe3Si also could coat Al4SiC4 grains. Moreover,the morphology of Al4O4C in Al4SiC4/Al4O4C composite refractory without addition of Fe2O3 is short fibrous-like structure,but changes into fine granules structure after adding Fe2O3.  相似文献   

19.
为了降低合成成本,以低能耗、低成本的天然锆英石、工业氧化铝和焦炭为原料,采用碳热还原氮化法合成了ZrN-SiAlON复相材料。根据反应方程式3Al2O3+6ZrSiO4+27C+8N 26ZrN+2Si3Al3O3N5+27CO设计锆英石和工业氧化铝的原料配比,改变还原剂焦炭的配入质量分数(分别为理论用量、过量5%、过量10%、过量20%),经球磨混合、成型、干燥后,在流动氮气中分别于1 500、1 550、1 600℃保温4 h合成,自然冷却后分析合成产物的相组成和显微结构。结果表明:1)在合成温度为1 500℃时,配碳量的增加有助于ZrN的生成;2)在合成温度为1 550℃时,配炭量过量20%的试样中有15R型的多型体SiAlON(即SiAl4O2N4)生成;3)在合成温度为1 600℃时,配碳量为理论量和过量5%的试样中的多型体SiAlON为15R型,而配碳过量10%和20%的试样中的多型体SiAlON则主要为12H型(即SiAl5O2N5)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号