首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了减轻风电对电网的影响,降低供电系统的旋转备用容量和运行成本,提出了以混沌理论为基础,基于相空间重构的支持向量机短期风速预测方法。为提高预测模型的预测精度和泛化能力,利用粒子群算法选择对相空间重构和支持向量机参数联合寻优,将最佳参数代入混沌支持向量机模型对短期风速进行预测。试验结果表明了该方法的有效性。  相似文献   

2.
风电场短期风速的准确预测能为风电并网运行的规划、调度、运行和控制提供及时有效的信息。支持向量机基于结构风险最小化原理,从整体上考虑曲线的平滑度对数据进行拟合,对风速预测时能及时跟踪其变化趋势。针对支持向量参数难以确定问题,采用遗传算法对最小二乘支持向量机惩罚系数C和核参数σ2寻优,在对参数遗传编码时,通过对数变换编码提高了搜索灵敏度,加快了模型收敛速度。最终利用现场连续150 h实测风速样本,对其中最后12 h进行预测,结果与广义回归神经网络(GRNN)相比,表明LS-SVM有更好的泛化能力,且取得了相对  相似文献   

3.
基于遗传优化的最小二乘支持向量机风电场风速短期预测   总被引:5,自引:0,他引:5  
风电场短期风速的准确预测能为风电并网运行的规划、调度、运行和控制提供及时有效的信息.支持向量机基于结构风险最小化原理,从整体上考虑曲线的平滑度对数据进行拟合,对风速预测时能及时跟踪其变化趋势.针对支持向量参数难以确定问题,采用遗传算法对最小二乘支持向量机惩罚系数C和核参数σ<'2>寻优,在对参数遗传编码时,通过对数变换编码提高了搜索灵敏度,加快了模型收敛速度.最终利用现场连续150 h实测风速样本,对其中最后12 h进行预测,结果与广义回归神经网络(GRNN)相比,表明LS-SVM有更好的泛化能力,且取得了相对误差绝对值的平均值为8.32%的良好效果.  相似文献   

4.
基于相似日小波支持向量机的短期电力负荷预测   总被引:3,自引:0,他引:3  
对受不确定性影响的短期电力负荷,本文给出一种基于小波支持向量机的预测方法.采用小波变换将日负荷数据分解到不同尺度上,利用各相似日低频部分的最大最小负荷构造相似系数,通过支持向量机预测一天中最大和最小负荷,结合相似系数得到预测日低频部分各时刻的预测值;对于高频部分采用各时刻均方加权的方法预测负荷值,把各部分的负荷值叠加得到完整的负荷预测值.用山东某电力公司的数据进行数据仿真,取得了较好的预测效果.  相似文献   

5.
风速预测精度的提高,对降低风力发电成本、合理安排风场选址等方面有着积极作用。使用DBSCAN聚类对所有数据进行去噪处理,选择最合适的风速数据序列进行实证研究。首先,针对风速数据序列具有混沌性而对预测结果产生影响的问题,采用C-C法确定相空间重构中所需参数。与此同时,结合混沌理论建立混沌支持向量机模型,用以预测未来24 h的风速值。之后,将该模型与EGARCH模型以及具有外生输入的非线性自回归网络(NARX)模型的预测结果进行对比。最后,根据各预测模型的RMSE和MAPE精度对模型预测效果进行评估。结果表明:基于混沌时间序列的支持向量机模型对NWTC m2气象站所在地风速具有最佳预测效果。  相似文献   

6.
7.
提出了双加权最小二乘支持向量机的短期风速预测方法。考虑到离预测点越远的历史风速数据对预测值的影响越弱,对训练样本中输入向量数据进行第1次加权,以体现不同元素对预测影响的差异。同时为区分训练样本的差异性,降低异常样本的干扰,对训练样本进行第2次加权。对双加权后的训练样本,采用加权最小二乘支持向量机模型进行预测,降低了对异常点的敏感度,实现了对不同样本的区别对待。根据某实测风速数据进行了风速预测,结果表明,所提方法能提高风速预测精度。  相似文献   

8.
基于相关向量机的短期风速预测模型   总被引:4,自引:0,他引:4  
通过对风速的时间序列进行分析,表明该序列具有混沌特性。在此基础上,利用相空间重构理论建立基于相关向量机(RVM)的短期风速预测模型,并对不同的核函数进行分析,选出最优的核函数。与现有的风速预测模型相比,该模型具有高稀疏性、核函数选择灵活等优点。仿真结果表明,与BP神经网络和支持向量机(SVM)模型相比,RVM模型预测精度更高。  相似文献   

9.
从最小二乘支持向量机(LS-SVM)的原理出发,从本质上阐明了LS-SVM在短期风速预测中的可行性与优越性。在对LS-SVM在应用中存在的包括数据预处理、核函数构造及选取以及参数优化等问题进行分析后,归纳了现行主要解决方法,从而全面总结了LS-SVM在短期风速预测中的应用概况。最后对基于LS-SVM的短期风速预测所存在的问题进行总结,并提出建议。  相似文献   

10.
短期负荷预测的支持向量机方法研究   总被引:110,自引:30,他引:110  
提出了一种基于支持向量机(SVM)理论的电力系统短期负荷预测方法。该方法采用结构风险最小化原则(SRM),与采用经验风险最小化原则(ERM)的传统神经网络方法相比,具有更好的泛化性能和精度,减少了对经验的依赖。SVM算法以统计学习理论作为其理论基础,它的训练等价于解决一个二次规划问题。为了提高负荷预测精度,文中在训练数据集中采用了负荷数据和温度数据。通过和多层BP神经网络进行比较的试验,结果证明了其在短期负荷预测中的有效性。  相似文献   

11.
基于最小二乘支持向量机的风速预测模型   总被引:7,自引:2,他引:7  
曾杰  张华 《电网技术》2009,33(18):144-147
风速具有较大的随机性,预测的准确度不高。针对这种现象,基于最小二乘支持向量机(least squares support vector machine,LS-SVM)理论,结合某风电场实测风速数据,建立了最小二乘支持向量机风速预测模型。对该风电场的风速进行了提前1h的预测,其预测的平均绝对百分比误差仅为8.55%,预测效果比较理想。同时将文中的风速预测模型与神经网络理论、支持向量机(support vector machine,SVM)理论建立的风速预测模型进行了比较。仿真结果表明,文中所提模型在预测精度和运算速度上皆优于其他模型。  相似文献   

12.
基于小波分解和最小二乘支持向量机的短期风速预测   总被引:9,自引:0,他引:9  
短期风速预测对并网风力发电系统的运行有重要意义。对风速进行较准确地预测,可以有效减轻或避免风电场对电力系统的不利影响,同时提高风电场在电力市场中的竞争能力。简述了短期风速预测的价值和方法,提出了基于小波分解(wavelet decomposition,WD)和最小二乘支持向量机(least square support vector machine,LS-SVM)的短期风速预测方法,分别以香港和河西走廊地区风电场为例,建立了上述2个地区风速预测的WD-LSSVM模型,根据上述地区的数据进行实例验证,结果表明文中的方法显著提高了超前一步预测的精度。  相似文献   

13.
为了减小风力发电的随机性对电力系统的影响,提出了一种基于最小二乘支持向量机的风功率短期预测模型。在研究最小二乘支持向量机的基础上,为解决最小二乘支持向量机建模时其参数对预测性能影响,运用粒子群算法对参数进行优化,最后建立了基于粒子群优化最小二乘支持向量机的预测模型。运用某风电场的实测数据进行仿真研究,为了对比分析,同时利用E1man神经网络模型和支持向量机模型进行了预测,仿真结果表明,本文所提方法与其它方法相比预测精度更高,可以有效地应用于风功率的预测。  相似文献   

14.
多频率尺度下的风电场短期风速预测融合算法   总被引:2,自引:0,他引:2  
提出了一种基于多分辨率分析下的短期风速预测方法.利用小波分解将原始风速序列分解成低频信号分量和高频信号分量,将低频信号分量作为时间序列模型的输入,将高频信号分量作为最小二乘支持向量机的输入,输出未来时间段的各分量预测值.最后将各分量的预测值重构为风速序列的预测值.以内蒙古风电场为例进行仿真,结果表明文中方法显著提高了超前风速预测的精度.  相似文献   

15.
基于小波包和支持向量回归的风速预测   总被引:4,自引:0,他引:4  
运用小波包变换和支持向量回归相结合的方法对提前1~6h的每10min风速预测进行研究。首先针对风速非平稳、非线性的特点,利用小波包变换将原始风速序列分解成一系列不同变动频率的子序列,再分别对这些子序列用支持向量回归法进行预测,最后将各自输出结果叠加得到最终的预测风速。选择某风电场2组具有不同特点的实测数据作为应用案例,结果表明,通过小波包变换更能把握风速变化规律,支持向量回归法具备较强的学习能力,小波包支持向量回归法优于现有的一些预测方法。  相似文献   

16.
鲸鱼优化支持向量机的短期风电功率预测   总被引:2,自引:0,他引:2  
为提高风电预测的精度,提出一种鲸鱼优化支持向量机SVM(support vector machine)的组合预测模型。该模型针对风电序列的非平稳波动特性,首先应用集合经验模态分解技术EEMD(ensemble empirical mode decomposition)将原始风电序列分解为一系列不同特征尺度的子序列;并引入鲸鱼优化算法WOA(whales optimization algorithm)解决SVM中学习参数选择难的问题,进而对各子序列建立WOASVM预测模型;最后,叠加各子序列的预测值以得到最终预测值。仿真表明,所提EEMDWOASVM模型具有较高的风电预测精度,显著优于其他基本模型。  相似文献   

17.
基于连续时间段聚类的支持向量机风电功率预测方法   总被引:2,自引:0,他引:2  
提出了一种基于连续时间段聚类的支持向量机风电功率预测方法。通过2次聚类把全年分为若干个类型的连续时间段,并对同类型时间段使用支持向量机建模,建立后的模型用于其他年份对应时间段的预测。与神经网络相比,支持向量机建模方法避免了局部最优。利用国内某风电场数据进行对比实验,证明了所述方法的有效性。  相似文献   

18.
基于最小二乘支持向量机的风电场短期风速预测   总被引:17,自引:3,他引:17  
杜颖  卢继平  李青  邓颖玲 《电网技术》2008,32(15):61-66
提出了一种基于最小二乘支持向量机的风电场风速预测方法。以历史风速数据、气压、温度作为输入,对风速和环境条件进行训练,建立预测模型,并且运用网格搜索法确定模型参数。算例结果表明,使用上述方法预测的风速与真实值基本一致。将本文提出方法与BP(back propagation)神经网络法的预测结果进行对比,表明前者具有更高的精度和更强的鲁棒性,因此是一种比较有价值的风速预测方法。  相似文献   

19.
针对智能电网大数据环境下,导致电力系统负荷波动的诸多因素存在多源异构性的问题,利用多核函数来对其多源异构特性进行差异化处理和融合,能够描述影响因素的内在分布特性并应对其变化,提高负荷预测精度。选取历史负荷、气温、气压、相对湿度、降雨量、风向、风速、节假日及电价9个属性作为多源异构影响因素,利用样本特征分布法、单变量法及核矩阵秩空间差异法来选择多核函数的构成,采用双层多核学习算法,建立了并行化多核支持向量机(SVM)负荷预测算法流程,并在Hadoop集群上进行了仿真验证。仿真结果表明,多核SVM比单核SVM预测平均相对误差小,双层多核学习、基于lp范数的多核SVM模型预测精度最高。因此,多核SVM能有效处理负荷预测中的多源异构数据,经并行化处理后,能提高负荷预测的速度与精度。  相似文献   

20.
针对风速序列随时间、空间呈现非平稳性变化的特征,提出一种基于经验模态分解(empirical mode decomposition,EMD)和支持向量机(support vector machine,SVM)的EMD-SVM短期风电功率组合预测方法。该方法首先利用EMD将风速序列分解为一系列相对平稳的分量,以减少不同特征信息间的相互影响;然后利用SVM法对各分量建立预测模型,针对各序列自身特点选择不同的核函数和相关参数来处理各组不同数据,以提高单个模型预测精度。最后将风速预测结果叠加并输入功率转化曲线以得到风电功率预测结果。研究结果表明,EMD-SVM组合预测模型能更好地跟踪风电功率的变化,其预测误差比单一统计模型降低了5%~10%,有效地提高了短期风电功率预测的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号