首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《功能材料》2021,52(1)
利用微弧氧化法,在微弧氧化反应电解质中加入氟钛酸钾和GR/TiO_2粉末,在镁合金表面制备了MAO-GR/TiO_2涂层。采用SEM和FT-IR分别对GR/TiO_2粉末的表面形貌和结构进行了研究,用SEM、XRD和元素线扫描对MAO-GR/TiO_2涂层的表面形貌、相结构和元素分布进行了研究,用三电极技术对MAO-GR/TiO_2涂层的耐腐蚀性能进行了研究。结果表明,通过溶胶-凝胶法可将纳米TiO_2接枝到GO表面,生成GR/TiO_2粉末;MAO-GR/TiO_2涂层主要由Mg_2TiO_4相、Mg_3(PO4)_2相、Mg和MgO相组成;以界面为分界线,涂层一侧Ti、P和O元素高于基体一侧,基体一侧Mg元素高于涂层一侧;MAO-GR/TiO_2涂层的腐蚀电位为-0.723 V,腐蚀电流密度为8.96×10~(-8) A/cm~2,相比镁合金基体和MAO涂层,腐蚀电位提高了48.3%和36.7%,表明MAO-GR/TiO_2涂层可以显著提高镁合金基体的耐蚀性能。  相似文献   

2.
通过在电解液中添加SiC纳米颗粒的方法,利用微弧氧化技术在ZL109铝合金上制备复合陶瓷层,研究SiC复合微弧氧化陶瓷层的微观结构和摩擦学性能。研究结果显示,SiC纳米颗粒进入到微弧氧化陶瓷层中形成了复合陶瓷层,复合陶瓷层主要由α-Al2O3、γ-Al2O3和SiC三相组成;与普通的微弧氧化陶瓷层相比,SiC复合陶瓷层的表面更加平整,硬度提高了20.4%;SiC复合陶瓷层在高速往复式摩擦磨损实验中的摩擦系数降低了22%、磨痕宽度减小了34.7%。分析表明,复合陶瓷层硬度的提高和导热性的增强是改善摩擦磨损性能的主要原因。  相似文献   

3.
铝合金微弧氧化陶瓷层的性能研究   总被引:15,自引:1,他引:14  
利用微弧氧化方法在LY12合金基体上制备了厚度达200μm的陶瓷涂层, 对该涂层的使用性能进行了研究。结果表明,铝合金微弧氧化陶瓷层的硬度达1700HV以上,划痕临界载荷为40N,耐盐雾腐蚀寿命大于2000h,在一定条件下,其耐磨性能与硬质合金相当。  相似文献   

4.
为了提高TC4合金的高温抗氧化性能,采用微弧氧化方法在NaAlO2+Na3PO4电解液体系中,于钛合金表面制备抗氧化陶瓷涂层。通过XRD、SEM、EDS等方法,表征涂层的相组成和微观结构,用纳米压痕仪测试涂层硬度与弹性模量,并研究了微弧氧化涂层的抗高温氧化及抗热震性能。结果表明:微弧氧化涂层表面多孔,涂层以Al2TiO5和金红石型TiO2相为主。微弧氧化涂层的纳米硬度为(7.8±0.6) GPa,显著高于TC4合金[(4.0±0.2) GPa]。微弧氧化涂层在700℃循环氧化80 h后,单位面积增重仅0.73 mg/cm2,远小于TC4合金的增重(20 mg/cm2),表现出良好的高温抗氧化性能。经700℃热冲击25次后,涂层未出现剥落现象,展现出良好的抗热震性能。由此可见,微弧氧化涂层能有效阻止氧的扩散,显著降低了钛合金基体的氧化速率,改善了钛合金的抗高温氧化性能。  相似文献   

5.
为了提高氢化锆表面微弧氧化陶瓷层的致密性及阻氢性能, 采用恒压模式对氢化锆基体进行微弧氧化处理, 在磷酸盐电解液体系下, 研究阶段占空比分别为40%-50%-60%、50%-60%-40%和60%-50%-40%三种情况下陶瓷层的生长过程。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、膜层测厚仪分析陶瓷层的形貌、相结构及厚度; 通过真空脱氢实验评价不同阶段占空比模式下获得陶瓷层的阻氢性能。研究结果表明: 不同阶段占空比模式下在ZrH1.8表面可制得厚度分别为162.6、175.9、158.7 μm的氧化锆陶瓷层, 且所制微弧氧化陶瓷层均由M-ZrO2、T-ZrO2以及Zr0.95Ce0.05O2三种物相组成, 阶段占空比对陶瓷层物相组成无显著影响; 阶段占空比为40%-50%-60%条件下, 氢化锆表面所制陶瓷层厚度达到162.6 μm, 氢渗透降低因子(Permeation Reduction Factor, PRF)达到12.5, 阻氢性能较佳。  相似文献   

6.
本研究利用小功率微弧氧化电源, 通过内充液式管状阴极的逐行扫描, 在2024铝合金样件表面生成微弧氧化陶瓷膜层, 对样件的局部受损部位进行了成功的修复, 从而突破了传统微弧氧化技术不能用于铝合金构件现场局部防护与修复的限制; 利用XRD、SEM、EDS等分析方法对陶瓷膜层的相组成与微观组织形貌进行了研究。利用纳米压痕仪测试了陶瓷膜层的纳米压痕硬度和弹性模量, 用动电位极化曲线测试陶瓷膜层的耐腐蚀性能。结果表明: 在恒电流模式下, 扫描式微弧氧化电压快速升高, 直接进入微弧放电阶段。其一次扫描成膜层厚度17 μm, 相对于传统微弧氧化具有很高的成膜效率。铝合金扫描式微弧氧化陶瓷膜层主要由α-Al2O3和γ-Al2O3组成, 膜层分为致密层和疏松层, 表面多微孔, 且有微裂纹; 纳米压痕测试结果表明, 陶瓷膜层纳米压痕硬度和弹性模量沿界面向外呈现先增加后减小的变化趋势。动电位极化曲线表明, 扫描式和传统微弧氧化陶瓷膜层都能够对基体起到有效的腐蚀防护作用, 传统微弧氧化陶瓷膜层的腐蚀防护作用高于扫描式。  相似文献   

7.
为了增强Al-Zn-Mg-Cu合金零件的耐腐蚀性能,通过在硅酸盐微弧氧化(MAO)电解液中增加钼酸根离子的方法,在合金表面制备了Al2O3-MoO2-SiO2复合陶瓷涂层.通过扫描电子显微镜、X射线衍射和电化学方法分析了钼酸钠的浓度对复合陶瓷涂层的形成、结构特征以及耐蚀性的影响.涂层的扫描电子显微镜(SEM)结果显示:...  相似文献   

8.
铸造高硅铝合金表面微弧氧化陶瓷层的耐磨性   总被引:13,自引:0,他引:13  
宋希剑  秦东 《材料保护》2000,33(4):51-52
应用微弧氧化这一高新表面改性技术在 ZL10 9铸造高硅铝合金表面形成了陶瓷层 ,并对其在不同温度下的耐磨特性等进行了对比测试与分析。结果表明 ,该项技术大大地改善了这种合金的表面耐磨性和显微硬度  相似文献   

9.
为了提高钛表面的生物活性,利用微弧氧化技术在钛表面制备了含有钙磷的多孔二氧化钛陶瓷层。研究了施加电压对多孔微弧氧化层的平均孔径、表面粗糙度、相成分、钙磷含量以及Ca/P原子比的影响。结果表明,随着微弧氧化电压的升高,平均孔径、表面粗糙度、膜层中钙磷含量以及Ca/P原子比都逐渐增大,膜层的相成分由锐钛矿逐渐向金红石转变,并且膜层中逐渐有羟基磷灰石生成。  相似文献   

10.
在Na5P3O10-KOH-Na2EDTA电解液中, 以石墨烯为添加剂, 在恒压模式下对ZrH1.8表面进行微弧氧化处理。采用涂层划痕仪测试陶瓷层与基体的结合力, 通过真空脱氢实验来评价陶瓷层的阻氢性能。电解液中添加石墨烯后, ZrH1.8表面微弧氧化陶瓷层均由内层致密层和外层疏松层构成, XRD图谱显示, 所制陶瓷层主要由M-ZrO2和T-ZrO2相组成。随着石墨烯浓度的增加, 陶瓷层的氢渗透降低因子(Permeation Reduction Factor, PRF)呈先增大后减小的趋势。当石墨烯浓度为0.10 g/L时, 陶瓷层的厚度约为66.5 μm, 表面孔洞和裂纹较少, 陶瓷层较致密, PRF值为13.2, 阻氢性能较好。  相似文献   

11.
为了提高2024铝合金的耐磨性,对其进行微弧氧化。利用扫描电镜(SEM)和X射线衍射仪(XRD)分析了涂层的微观组织结构和物相组成;采用高速往复摩擦磨损试验机对2024铝合金微弧氧化涂层在不同载荷下的磨损性能进行了研究,并采用白光三维形貌仪进行磨损形貌分析及磨损体积计算。结果表明:2024铝合金微弧氧化涂层是一种微孔结构,涂层相主要成分为α-Al_2O_3、γ-Al_2O_3,且Al_2O_3具有高硬度、耐磨损的优良特性,有利于提高铝合金的耐磨损性能;微弧氧化涂层的摩擦系数随着载荷的增加而减小,而磨损量随载荷的增加而增加,磨损机理为磨粒磨损。  相似文献   

12.
为探索更适合接触网铝合金零部件的表面处理技术,通过中性盐雾腐蚀、酸性全浸泡腐蚀试验以及极化曲线测量对比分析了铸造铝合金基体、阳极氧化膜层、微弧氧化膜层的耐蚀性。结果表明:处理后的铝合金耐腐蚀性得到了较大的提高,且微弧氧化膜比阳极氧化膜表现出了更加优异的耐腐蚀性能;微弧氧化膜层致密且孔隙率低的显微结构是其表现出好的耐腐蚀性的主要原因。  相似文献   

13.
目前国内尚未开展铍铝合金的微弧氧化技术研究。采用微弧氧化技术在粉末冶金铍铝合金材料表面原位生长出一层氧化膜;采用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)对氧化膜层的结构、形貌和成分组成进行表征分析。结果表明:氧化膜层平滑、致密,表面分布着Be、O、Al等元素。在微弧放电的高温下,氧化膜层的形成是各个反应过程的综合结果。所得氧化膜层的厚度均值为11.221μm,从氧化膜表层到基体方向,O、Si、P元素的含量有明显减少的趋势,而Al元素和Be元素含量的变化趋势则刚好相反。膜层有一定的结合强度、硬度和较小的表面粗糙度,并且能耐114 h的盐雾试验,击穿电压高于1 000 V。  相似文献   

14.
姜峰  张志浩  王毅坚  王海洋 《材料保护》2019,52(5):83-85,110
为提高304不锈钢在实际工况中应用时的耐腐蚀性能,采用熔剂法对304不锈钢热浸镀铝,并对镀铝层进行扩散退火处理,通过厚度测试,形貌观察及成分分析优选了热浸镀工艺及扩散退火工艺,并采用冲刷腐蚀试验研究了最佳工艺制备的镀层的冲蚀性能。结果表明:304不锈钢热浸镀Al-3.0%Si-0.5%RE,在740℃左右浸镀15min时,镀层厚度为100μm左右;在820℃扩渗4 h,获得了较好的扩渗层,其厚度约为115μm;冲蚀时间达到120 h时,经最佳条件热浸镀铝+扩散退火处理后镀层的冲蚀失重速率最小,为0.092 g/(h·m2),未热浸镀铝及扩散退火处理的304钢原始试样的冲蚀失重速度相对较快,其冲蚀腐蚀速率为0.121 g/(h·m^2),约为热浸镀铝试样的1.32倍。  相似文献   

15.
铝合金黄色微弧氧化膜的制备及其性能   总被引:3,自引:0,他引:3  
目前,铝合金微弧氧化膜色泽单一,多为白色,影响了其装饰性和在光学仪器方面的应用.为此,以高锰酸钾为着色剂,通过控制电解液的组成及其浓度,在铝合金表面原位生成了黄色微弧氧化膜.用X射线衍射(XRD)和扫描电镜(SEM)分析、观察了氧化膜层的相结构和表面形貌.结果表明:陶瓷膜层致密,与基体结合紧密;膜层主要组成相为Al,Al2O3,Mn5O8,Mn3O4,MnWO4;黄色陶瓷膜色泽稳定,较铝合金基体腐蚀电位有所提高.  相似文献   

16.
周雅  江溢民  周佳 《材料保护》2012,45(1):33-35,78
反向占空比对微弧氧化膜组织结构和性能的影响很大。恒流条件下用不同反向占空比(10%-80%)对7075铝合金进行微弧氧化,研究了反向占空比对膜层厚度、粗糙度、致密层比例、耐蚀性、形貌的影响,并分析了膜层的相结构。结果表明:当反向占空比达到50%时膜层综合性能最佳,膜层最厚(83.4μm),粗糙度2.47μm,致密层比例最大,耐点滴时间最长,盐雾腐蚀1200h仍未发生腐蚀;微孤氧化膜中有许多不均匀的“火山”喷发状孔洞,主要物相为γ-Al2O3。  相似文献   

17.
钛合金微弧氧化膜具有优良的综合性能,但过去的研究多针对Ti6Al4V及医用纯钛,且电解液常用硅酸盐和磷酸二氢盐体系,不够全面、系统。为此,以磷酸盐溶液体系在船用TA2表面制备了陶瓷微弧涂层。采用SEM、光学显微镜、X射线衍射仪和显微硬度计对陶瓷膜的表面形貌、截面形貌、氧化层厚度、相结构和显微硬度进行了观察测试,用电子万能材料试验机和数字万用表测定了膜层的结合强度和绝缘性,并用盐雾试验机考察了涂层的耐蚀性。结果表明:随氧化时间的延长,膜层厚度不断增加,氧化60min后膜层厚度可达到20μm以上;陶瓷层主要由金红石TiO2相和锐钛矿TiO2相构成,膜基结合强度达到30MPa以上,膜层绝缘性和耐蚀性良好。  相似文献   

18.
占空比是微弧氧化过程中的重要参数,目前研究多针对恒定单一占空比模式。为此,在优化的复合电解液体系中对ZK60镁合金进行微弧氧化处理,研究微弧氧化过程中阶段调节不同占空比对微弧氧化膜层性能的影响。通过电压-时间曲线分析微弧氧化膜层生长特性,并利用扫描电镜(SEM)、激光共聚焦显微镜、全浸试验等手段对膜层微观结构及性能进行表征。结果表明:阶段调节占空比模式下,微弧氧化初期应采用较大占空比有利于钝化膜击穿,微弧氧化中期适当降低占空比有利于膜层平稳生长,膜层生长后期采用较小占空比可以较好地修复膜层;当阶段占空比参数设置为60%-50%-40%时,膜层微观结构均匀致密,在3.5%溶液中室温浸泡120 h后的腐蚀速率为0.100 7 g/(m~2·h),表现出良好的耐蚀性;膜层与基体结合牢固,其最高临界载荷为8.95 N。  相似文献   

19.
王平  王春华  杨军  易锋 《材料保护》2011,(10):51-52,74,8
微弧氧化膜表面的微孔对氧化膜性能有较大的影响。采用硅酸钠、沸水和常温封孔剂对ZLl08铸铝微弧氧化膜进行了封孔处理,研究了封孔处理对微弧氧化膜性能的影响。结果表明:封孔处理后,微弧氧化膜表面形貌发生了变化,膜厚略有增加,表面硬度显著下降,耐蚀性提高。3种封孔工艺中,硅酸钠封孔后微弧氧化膜表面硬度最高,耐蚀性最好。  相似文献   

20.
为了改善钛合金硅酸盐和铝酸盐工作液微弧氧化膜的性能,采用超声波辅助(UA)进行了微弧氧化。分别用硅酸盐和铝酸盐体系工作液在Ti-6Al-4V钛合金表面制备了Al-UA-MAO和Si-UA-MAO膜,研究了各氧化膜的性能。利用X射线衍射仪、扫描电子显微镜及磨损、耐腐蚀试验机,对各氧化膜的物相、表面形貌、耐磨及耐腐蚀性能进行了测量和分析。结果表明:本复合工艺可降低微弧放电电压,尤其是硅酸盐体系降低程度更大;在硅酸盐体系工作液中,UA-MAO复合工艺能够更有效地增强氧化膜的密封性、致密性和光整度,其耐磨性较无超声波辅助工艺提高近50%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号