首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
近年来,运用纳米制剂靶向技术治疗癌症取得了很好的疗效,尤其是共递送多种抗癌药物。相比单一药物,联合应用不同药物分子靶向治疗范围更广,能有效地降低药物的毒副作用,或是相同细胞通路的抗癌药物组合疗法,减少每种药物剂量并增强疗效,均可能在一定程度上逆转多药耐药性。但是,组合给药因不同药物的药代动力学差异导致药物摄取不一致而受到限制,而且疗效与组合药物的相对浓度关系密切,一定比例的药物组合产生协同作用,而其他比例则可能是加和作用或拮抗作用。目前,脂质体、聚合物胶束、高分子囊泡、树枝状大分子、水凝胶和无机纳米粒子在内的纳米载体已被证明能成功地在各种肿瘤模型中共递送抗癌药物。这些纳米载体可改善药物的血清稳定性,提高生物相容性,延长在体内的循环时间。本文主要论述抗癌药物共递送原理、常见共递送载体类型以及CombiPlex~?平台完成临床试验的两种脂质体制剂和三类仍处于临床前研究的经典共递送系统,包括阿霉素和紫杉醇共递送系统、紫杉醇和顺铂共递送系统、阿霉素和姜黄素共递送系统,旨在为更多联合给药方案提供参考和新思路。  相似文献   

2.
癌症是一种致死率极高的全球性疾病。迄今为止,化学药物疗法仍然是治疗癌症最为直接有效的手段,然而,目前采用的化疗药物通常不具备特异性,在杀死肿瘤细胞的同时也会对正常组织细胞带来严重的毒副作用。因此,如何安全有效地将抗癌药物输送至肿瘤组织并增强药物在肿瘤细胞内的吸收是当今癌症治疗领域急需解决的难题。药物控制释放技术通过功能化载体材料对药物进行负载,对药物释放位点及速率进行控制,从而实现降低药物毒副作用、提高药物生物利用度的目的。载体材料是实现药物控制释放的技术关键,因此,设计并开发多功能药物载体已成为该领域的研究热点。理想的药物载体通常需具备高稳定性、低生物毒性、非免疫原性及组织靶向性等特点。目前,无机纳米粒子、脂质体、水凝胶、聚合物胶束、微囊等多种药物载体已被广泛应用于癌症的诊断及治疗研究。基于天然高分子材料的药物载体因具有优良的生物相容性及临床应用前景受到了众多研究者的青睐,因此,对天然高分子材料进行化学修饰构建药物载体也已成为药物控释领域的重要研究方向。多糖是一类具有良好生物降解性及生物相容性的天然高分子材料,具有在自然界中种类丰富、水溶性高、容易进行化学修饰等优点。多糖的分子结构中含有大量的活性反应基团(羟基、氨基和羧酸基团等),经过特定的化学修饰,改变其物理或化学性质可形成水凝胶、胶束、囊泡等结构,其作为药物载体在生物材料领域具有潜在的应用价值。目前,常用的多糖修饰方法包括疏水性分子接枝、醛基化改性、原位二硫键修饰等。修饰后形成的基于多糖的药物载体具有药物释放速度可控、生物安全性好等特性,并且可以实现改变药物进入人体的方式及在体内的分布,被动或主动靶向将药物输送到特定的作用部位,达到靶向治疗的目的。本文综述了多种对天然多糖进行化学修饰,构建水凝胶、胶束及囊泡类多糖药物载体的方法,并简要讨论了基于多糖的药物载体在生物医学领域的研究前景及应用价值。  相似文献   

3.
高分子药物递送载体材料具有良好的生物相容性和生物可降解性,可以有选择性的释放药物,以提高药物利用率和降低药物的副作用,因此,高分子药物递送载体材料已成为当前的研究热点.聚乙烯吡咯烷酮(PVP)是一种绿色的高分子材料,具有优异的溶解性和低毒性,在医用材料领域具有广泛的应用.主要介绍了高分子药物递送载体材料的基本特性,并对...  相似文献   

4.
聚合物材料由于具有良好的生物相容性及生物可降解性而广泛地用于口服药物递送的载体。聚合物纳米载体可以增强疏水性化疗药物的溶解性和渗透性;利用聚合物纳米载体介导化疗药物的口服递送不仅有助于克服胃肠道的吸收屏障,还可以降低代谢系统首过效应,从而提高化疗药物的口服生物利用度;此外,通过在聚合物载体上修饰靶向基团还可以实现肿瘤高效富集,进而达到更好的抑瘤效果。文中就不同结构与组成的聚合物纳米载体在口服递送化疗药物领域的研究进展进行综述。  相似文献   

5.
生物医用绿色载体材料因其独特的结构和优异的性能,被广泛应用于医药、医疗和食品等领域,并发挥着越来越多的作用。特别是生物医用载体材料用于药物递送系统,可用载体材料将抗癌药物包裹在内,靶向、缓释和控释递送药物至肿瘤部位,有效治疗癌症,并且避免对人体正常组织的毒副作用,生物医用材料载药微球已是当前的研究热点之一。主要论述了天然以及合成的生物医用载体材料,对目前新型医用载体的制备以及应用进行了介绍,并对目前抗癌药物载体存在的问题进行的归纳总结,对其研究方向也进行了展望。  相似文献   

6.
通过介入导管将药物和基因载运到血管内病灶部位,并在血管组织中长期释放。以生物可降解聚合物PLGA为基材,采用超声乳化/溶剂挥发法分别制备包载药物和基因的纳米粒子,对纳米粒子进行了表面修饰提高血管吸收性;用载反义MCP-1基因的纳米粒子转染平滑肌细胞,对平滑肌细胞基因组DNA进行PCR扩增;用兔髂总动脉和颈总动脉血管损伤模型进行灌注实验。体外释放实验表明均具有缓慢释放作用,凝胶电泳实验证明基因的结构未遭破坏。说明纳米粒子是非常理想的血管内导向定位药物和基因控释的载体。  相似文献   

7.
有机/无机杂化的介孔有机硅纳米颗粒因其高的比表面积、丰富的介孔孔道、功能性的骨架以及高的药物装载量等特点而在生物医学领域受到广泛关注。本研究提出以二硫键桥接的有机/无机杂化介孔有机硅纳米颗粒为载体共装载化疗药物和光热剂, 设计制备以DNA分子作为控释“开关”修饰介孔有机硅纳米颗粒的纳米递送系统(ICG/DOX-MONs @DNA20)。该纳米递送系统结合了光热剂的光热效应以及DNA分子随温度升高而从颗粒表面脱附的特性, 可实现近红外光照射激发药物在肿瘤细胞中的控制释放, 同时获得药物化疗-光热联合治疗肿瘤的效果。实验结果表明, 纳米递送系统在近红外光照下能迅速升温至43 ℃以上的热疗温度, 而且在37 ℃条件下6 h内仅缓慢释放药物12.3%, 而当温度升至43 ℃时则快速释放药物52.4%; 细胞实验显示该纳米递送系统能够被HeLa肿瘤细胞吞噬, 在近红外光照下有明显的药物化疗-光热联合治疗效果。因此, ICG/DOX-MONs@DNA20纳米递送系统在药物化疗-光热联合治疗肿瘤方面具有应用前景。  相似文献   

8.
高分子微胶囊药物释放体系   总被引:5,自引:0,他引:5  
用高分子材料作为载体的高分子微胶囊和纳米级胶囊药物制剂不仅能控制药物以一定的速度释放 ,而且还可以对生物体的生理指标变化作出相应的反馈 ,因而可以制成靶向药物释放体系。文章较全面地综述了高分子微胶囊药物的制备技术和应用。阐述了高分子微胶囊的粒径、表面积、孔度、药物性能和药含量 ,以及高分子胶囊材料的性能对药物释放行为的影响。并对药物释放机理进行了简单扼要的陈述。  相似文献   

9.
超顺磁性纳米粒子(SPIONs)具有超顺磁性、良好的生物相容性,在肿瘤的诊断和治疗方面有很大潜力。肿瘤细胞表面会特异性的表达某些表面标志物,因此以磁性纳米颗粒为核心的分子探针与肿瘤细胞表面的特异性分子标志物相结合,可特异性的识别肿瘤并形成磁共振影像。SPIONs经特定的配体修饰,可赋予其组织器官靶向性,通过高渗透性以及外加磁场双效靶向来提高药物在肿瘤部位的生物利用度,从而减少对正常细胞的毒性,提高肿瘤局部的药物浓度。SPIONs具有很高的磁热效应,可通过导热量杀死肿瘤细胞而被用于热疗,热疗较放疗和化疗的副作用小。因此功能化的SPIONs必将成为临床深受欢迎的造影剂和基于MRI的诊断和治疗试剂。总结了SPIONs在肿瘤诊断和治疗方面的应用,同时探讨SPIONs的性质、合成方法和表面修饰。  相似文献   

10.
磁性纳米材料由于具有优异的纳米效应和磁性能,在生物医药领域可广泛应用于磁靶向、磁热疗、药物递送、生物分离等方面,并已作为核磁共振造影剂应用于临床。通过将不同类型的聚合物基质与磁性纳米填料结合在一起,可开发出多种类型的磁性纳米复合功能材料。文中综述了磁性纳米粒子领域的最新动态,详细阐述了磁性纳米粒子的制备方法和改性技术,讨论了磁性纳米粒子复合材料在药物载体、核磁共振成像、磁热疗等生物医学领域的应用前景。  相似文献   

11.
正化疗是一种重要的癌症治疗手段,但是化疗药物往往具有严重的毒副作用且很难达到令人满意的治疗效果,因而其在临床上的应用仍有待改善。肿瘤靶向药物递送是一种极具潜力的新型治疗手段,该类技术能有效增加化疗药物在靶部位的浓度同时降低其在健康组织器官内的蓄积,最终提高化疗的疗效和安全性。在众多靶向药物递送载体中,聚合物胶束是目前应用最广泛且最成功的载体之一。聚合物胶束是由两亲性嵌段共聚物通过自组装形成的纳米级药物载体,具有一个亲水性的外  相似文献   

12.
正目前大多数给药途径均为口服给药,药物的利用效率较低,不具备靶向性,只能加大药物的使用剂量来获得理想的效果,因此人们对能够靶向递送药物的材料抱有巨大的期望。氧化铁纳米粒子(IONPs)能够在磁场的作用下受控移动,在特定的组织中聚集,实现靶向性。表面的多糖涂层不仅保证了IONPs的稳定性,还能降低纳米粒子毒性,同时为药物以及特异性识别分子提供附着位点。在本期刊载的论文"多糖涂覆的氧化铁纳米粒子的合成及其药物递送应用研究进展"中,  相似文献   

13.
癌症是一种动态和异质性疾病,具有高死亡率和高发病率。化学疗法被认为是目前治疗癌症最有效的手段之一,常规化学疗法本身具有靶向非选择性、高毒性、化疗药物易被快速清除、药物失活、肿瘤的多药耐药性以及在非特异性位点积累等缺点。药物递送技术和纳米技术的进步为旧药物提供了新的治疗方式,可以改善药代动力学,增强其在实体瘤中的积聚并减小这些重要治疗剂的毒副作用。癌症纳米技术是癌症诊断和治疗的新兴领域。尽管目标药物递送系统向特定的部位递送抗癌剂已经取得了相当大的进展,但是研究者们仍在开发和探索新的纳米材料,以获得更高的药物递送效率。癌症治疗至关重要的是抗癌药物载体对药物的高效靶向递送。随着药物递送技术和纳米技术的进步,发展了许多高效的药物递送系统,提供了同时治疗和诊断(诊疗)的多功能平台。近年来,量子点由于其独特的光学和物理化学性质,被越来越多地用于细胞靶向、成像和药物递送。本文讨论了生物相容性良好的石墨烯量子点、碳量子点、氧化锌量子点作为抗癌药物载体应用的最新研究进展,以及这些量子点在细胞毒性、荧光成像、智能递送和协同治疗等多功能部分的应用和作为治疗用药物载体在实际应用中的挑战。  相似文献   

14.
多功能药物载体的设计合成并应用于肿瘤的联合治疗得到了研究人员的广泛关注.本文介绍了一种连接靶向基团的化疗-光热联合治疗纳米平台.首先制备了尺寸可控的平均长度为40、55和150 nm的空心多孔氧化硅纳米管,在表面修饰具有光热功能的硫化铜纳米颗粒,然后连接乳糖酸基团实现肝癌细胞靶向功能.平均长度为40 nm、修饰靶向基团的空心多孔材料显示出良好的生物相容性,且具有最大的HepG2细胞吞噬量.负载盐酸阿霉素的纳米复合材料表现出pH和808 nm近红外激光刺激响应的释放效果.将CuS光热治疗和盐酸阿霉素化疗相结合的方法在体外和体内的抑制肿瘤效果都优于单独治疗.研究结果表明,该纳米复合材料在化疗-光热联合治疗方面具有潜在的应用价值.  相似文献   

15.
白蛋白包覆纳米Fe3O4磁性粒子的制备与表征   总被引:3,自引:0,他引:3  
目的:制备用于肿瘤靶向治疗的纳米级Fe3O4磁性粒子。方法:采用液相共沉淀法制备纳米Fe3O4颗粒,通过高温固化法使得白蛋白固化包覆磁性Fe3O4磁性粒子。结果:X-Ray衍射分析表明制得的纳米Fe3O4为反尖晶石结构,晶粒平均粒径为17.9nm;白蛋白包覆的磁性纳米粒子的平均粒径为341nm。结论:纳米Fe3O4及其白蛋白包覆的磁性粒孚可用作药物的载体,适用于肿瘤靶向治疗的进一步研究。  相似文献   

16.
近几十年来,抗生素耐药性一直是公众健康和临床实践中一个亟需解决的问题,抗菌肽(AMP)因其独特的抗菌作用机制、广谱抗菌活性、较低的药物残留以及易于合成和修饰而成为替代抗生素治疗的可行替代方案之一。大多数抗菌肽来源于动植物,由于其结构中氨基酸组成与序列的不同,使其作用机制也略有不同。抗菌肽在临床应用中仍存在一些缺陷,如抗菌肽易被酶水解、细胞毒性大等,这也在一定程度上限制了抗菌肽在临床医学上的应用。抗菌肽的递送载体材料的开发和应用可以很好地解决抗菌肽以上的缺陷,此外,该递送载体材料也有助于提高抗菌肽的疗效和生物稳定性、减少副作用以及获得有机靶向和药物控释的效果。主要对抗菌肽的递送载体材料(脂质体、抗菌肽-金属纳米粒子共轭物、模拟抗菌肽聚合物的纳米材料,介孔二氧化硅材料等)系统进行了综述。  相似文献   

17.
研究了一种含乳糖酸修饰的氧化石墨烯(GO)复合材料的制备以及其载药性能。这种纳米载体可用于药物的控制释放以及靶向传递。首先利用羧甲基壳聚糖(CMC)、乳糖酸(LA)功能化修饰GO,并连接异硫氰酸荧光素(FITC)用于示踪,合成GO-CMC-FI-LA,并对此材料进行乙酰化,合成药物载体GO-CMC-FI-LA-Ac。最后将复合材料GOCMC-FI-LA-Ac负载抗肿瘤药物阿霉素(DOX),合成载药复合物GO-CMC-FI-LA-Ac-DOX。研究发现CMC、FITC和乳糖酸被成功连接在GO的表面官能团上,且并不影响其原本的二维片状结构,同时药物载体具有较高的药物负载量。体外药物释放实验结果表明DOX的释放行为与pH值有关,相比于中碱性,DOX在酸性条件下的释放率更大,可更好的用于治疗肿瘤细胞。因此,此复合材料性能良好,具有广阔的应用前景,值得进一步的研究。  相似文献   

18.
于树芳  顾鑫  伍国琳  王亦农  高辉  马建标 《功能材料》2012,43(11):1414-1417
通过大分子引发开环聚合和侧基改性,制备了一种侧链含有吗啉丙基的聚乙二醇-聚(吗啉丙基-天冬酰胺)-聚丙氨酸三嵌段共聚物。利用肿瘤细胞外、细胞内和正常组织pH值环境的差异,调节聚合物载药纳米粒子的结构和性能实现肿瘤部位靶向释放的目的。在水溶液中,此聚合物可自组装形成一种核-壳-冠型的3层共聚物胶束,其中疏水性的聚丙氨酸链段自聚集形成胶束的核,聚(吗啉丙基-天冬酰胺)链段形成具有pH值-响应性的壳层,用于包埋和释放药物,外围的聚乙二醇链段可以提供一个稳定的水合冠层,延长药物的体内循环时间。以阿霉素作为模型药物在自组装的过程中包埋到胶束内。研究发现,由于吗啉环在酸性条件下的质子化导致链段亲疏水性质发生明显变化,载药胶束的药物释放能力随环境pH值的降低药物的释放速率显著增加。  相似文献   

19.
线性-树枝状嵌段共聚物(telodendrimer)是由线性高分子与树枝状嵌段通过化学键连接而成的一类特殊拓扑结构的共聚物。这类共聚物具有高度可调的化学组成及结构,其可根据需求设计成为与蛋白质药物具有多重杂化超分子相互作用力的大分子,以用于蛋白质药物的稳定封装及靶向输送。线性-树枝状嵌段共聚物作为一种理想的蛋白质药物载体,可实现以下4个方面的功能:(1)其可有效封装蛋白质分子从而形成尺寸在30 nm以下的纳米粒子,并通过被动靶向作用将蛋白质运送至肿瘤部位。(2)其可与类脂质(lipidoid)形成复合纳米粒子用于截短型白喉毒素(DT390)的细胞内传递及原位脑瘤的有效治疗。(3)其可结合计算机虚拟筛选技术从而根据蛋白质药物的结构进行聚合物纳米载体的定制化设计,并应用于胰岛素的递送进而实现对血糖值的有效控制。(4)其可作为可移除型保护层与阳离子聚合物复合,在有效进行蛋白质胞内传递的同时降低阳离子聚合物引起的细胞毒性、溶血性及非特异性吸附或聚集。总结了基于线性-树枝状嵌段共聚物的蛋白质药物递送系统的研究进展,并讨论了其对疾病的治疗情况。  相似文献   

20.
采用壳聚糖作为载体,通过分子结构设计,以叶酸靶向受体改性壳聚糖,然后选择5-氟尿嘧啶为模型药物,采用复凝聚法制备新型壳聚糖靶向缓释功能高分子载药微球。通过红外光谱和1 H-NMR核磁共振分析确定了叶酸改性壳聚糖化学结构,并通过扫描电镜、激光粒度分析仪、激光共聚焦显微镜及紫外光谱等现代仪器和分析方法对载药微球的形貌结构、粒径、包埋率、载药量和体外药物释放特性等进行研究。结果表明,模型药物被成功包埋到叶酸改性后的壳聚糖微球中,包埋率E和载药量L最高可达86.5%和32.7%,载药微球的平均粒径为5.251μm,多分散系数(PDI)为0.056,球形度、分散性良好;激光共聚焦显微镜结果显示微球为核壳结构;体外释放实验表明壳聚糖靶向缓释功能高分子载药微球具有持久的缓释作用,24h后载药微球在模拟胃液(pH值=1.2)中释放率为70%,在模拟肠液(pH值=7.4)中释放率为40%,释药速度与释放介质的pH值密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号