首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
旋转气冷涡轮三维流场的实验与数值研究   总被引:1,自引:1,他引:0  
采用k-e湍流模型对气冷涡轮在静止和旋转2种工况下三维流场进行数值计算,并与PIV测量结果进行对比。计算得到射流和主流的掺混区域三维速度以及射流尾迹区二次流动,k-e湍流模型的计算结果与实验基本吻合。与静止涡轮流场相比,旋转状态下涡轮内部流场中存在的离心力、哥氏力的作用使射流与主流掺混流场三维速度发生改变,其中径向速度的改变明显。计算和实验结果表明,旋转对气冷涡轮叶片压力面侧流场的影响大于吸力面。同时,吹风比增大使射流与主流掺混流场区域以及射流尾迹区的范围扩大。  相似文献   

2.
李录平  唐学智  张浩  黄章俊 《中国电力》2018,51(12):7-13,35
采用数值模拟的方法研究了旋转对叶片气膜冷却效果的影响,详细对比了不同吹风比下叶片在旋转和静止状态下的气膜冷却特性,并用平均气膜冷却效率和不均匀系数评估了气膜冷却效果。结果表明:在叶片压力面,叶片的旋转使得射流气体从气膜孔流出后法向动量增大,与主流掺混作用加强,从而使得叶片压力面气膜冷却效率值低于静止状态;在叶片吸力面,叶片旋转使得冷却气体流出后法向动量减小,能够更好地贴附在叶片表面向下游流动,使得旋转时叶片吸力面气膜冷却效率要优于静止状态,并且叶片后沿的平均气膜冷却效率较静止状态有显著提高;旋转状态下叶片表面的不均匀度系数要略大于静止时叶片表面不均匀度系数。  相似文献   

3.
采用Realizable k-ε紊流模型,前缘滞止线两侧孔排采用负角度对吹式、其它孔排采用α=30°、β=45°复合角度射流孔,定义叶片表面为无滑移绝热壁面,主流温度Tm=473.15K,射流温度Tc=293.15K,对不同吹风比下叶片表面的气膜冷却效率及流线进行了分析。结果表明:随着吹风比的增加,叶片压力面侧的气膜冷却效率明显提高,叶片前缘处冷却效率略有提高,叶片吸力面侧可形成连续的气膜,气膜冷却效率较高;在滞止线两侧采用单一角度叉排对吹式孔排虽然可以提高该处气膜冷却效率,但此处射流对主流的扰动也比较强烈;复合角度射流的优势在局部主流速度较高的情况下能得到很好的体现。  相似文献   

4.
燃气轮机涡轮叶片真实壁面与燃气温比实验存在耗费高、测量误差大的问题。采用数值模拟可以避免高温实验带来的困难。运用Fluent商业软件数值模拟叶栅进出口压比为2,壁面与燃气温比T_R分别为0.7、0.8和0.9时,叶片吸力面和压力面的努塞尔数及速度分布。结果表明:T_R越大,壁面附近无量纲温度梯度越小,叶片表面努塞尔数越小;T_R为0.9与0.7时,努塞尔数相差最大达32%;随着T_R的增大,吸力面分离泡产生的位置向前缘靠近,分离泡沿流向和法向的范围增大;由于分离泡引起湍流边界层的分离与再附,叶片表面的努塞尔数沿主流方向在0.836x/d0.884范围内急剧上升。本文研究结果可为燃气轮机真实壁面与燃气温比下的设计修正提供理论依据。  相似文献   

5.
燃气轮机透平叶片气膜冷却数值模拟   总被引:1,自引:0,他引:1  
沈菁菁 《发电设备》2015,29(1):11-14,23
透平叶片的冷却技术是提高燃气轮机效率的关键,其中气膜冷却是非常重要的一种冷却方式。参考某型燃气轮机第一级动静叶片的几何尺寸进行建模,采用数值模拟的方法对气膜冷却进行了分析研究,主要研究了叶片前缘的气膜冷却。分析比较了多种参数对气膜冷却效果的影响,即不同吹风比、密度比、自由流湍流度和射流角度的影响。结果显示:吹风比过大或过小,冷却效果都不好;高密度的射流比低密度的射流更容易保持在表面处;低湍流度比高湍流度时气膜冷却有效度更佳;适当调整射流角度能改善冷却效果。  相似文献   

6.
采用数值仿真软件,选用Realizable k-ε双方程湍流模型,对燃气轮机交叉孔叶片进行气膜冷却仿真研究;搭建实验平台,研究不同吹风比下的叶片冷却效率和对流换热系数;将仿真结果与实验数据进行对比,结果表明理论值与实验值具有一致性。最后得出结论:叶片前端气膜孔位置冷却效果最佳,沿着主气流方向,气膜冷却效果逐渐减弱;叶片吸力面的气膜冷却效果比压力面好;随着吹风比增大,气膜覆盖效果增强,冷却效率提高。  相似文献   

7.
旋转叶片气膜冷却效果的数值研究   总被引:2,自引:1,他引:1  
采用数值模拟方法研究了静止和旋转涡轮叶片表面不同工况下的气膜冷却效果,计算给出了吹风比M=1.0、1.5等工况下静止和旋转叶片压力面、吸力面的气膜冷却效率,以及不同射流孔下游的气膜冷却效率,并分析了旋转和吹风比对气膜冷却效果的影响。结果表明:静止叶栅,M=1时叶片气膜冷却效果较好,旋转叶栅,M=1.5时叶片气膜冷却效果较好;叶栅在高速旋转时,冷却气流对射流孔附近区域影响不大,叶片尾缘附近气膜冷却效率呈现先增大后减小的趋势;叶片高速旋转时,产生的离心力使冷却气流流向叶顶区域,靠近叶顶区域的气膜冷却效率值较高。  相似文献   

8.
非定常尾迹宽度对气膜冷却效果的影响   总被引:1,自引:0,他引:1  
对非定常环境下动叶气膜冷却的流场进行数值模拟,研究非定常尾迹宽度对气膜冷却效果的影响。结果表明,对于动叶的气膜冷却来说,由非定常尾迹形成的低速区对冷却射流的压制作用减小,使冷却射流更多地进入主流并与其掺混,使得气膜孔下游叶片表面的冷却效果降低。当尾迹宽度增大时,叶片表面气膜冷却效果降低的程度增加。非定常尾迹对压力面上冷却效果的影响大于吸力面。压力面上在第1个冷却孔后面冷却效率降低了15%,而吸力面上的冷却效果变化不是很明显。  相似文献   

9.
本文对叶片高速扫掠作用下高压涡轮外环的非定常气膜冷却过程进行了数值模拟,应用滑移网格实现涡轮叶片与外环壁面之间的相对运动,分析了叶片的旋转效应、吹风比、转速、气膜孔逆顺流布置等因素对高压涡轮外环气膜冷却特性的影响规律。结果表明:叶片与涡轮外环之间的相对运动使得气膜分布更加均匀,同时导致了吸力面附近气膜的葫芦状分布,有利于对外环壁面的冷却;逆向分布气膜孔在大吹风比与高转速下有更好的气膜冷却效果;吹风比的增加加强了叶顶泄露涡作用下的葫芦状气膜分布,而转速的增加减弱了叶顶泄露涡对冷气的压迫作用。  相似文献   

10.
为了增强燃气轮机动叶的气膜冷却效果,提出一种缩放型气膜孔结构,采用数值模拟的研究方法,模拟了吹风比M?1.0、主流湍流度Tu?5%时,分别带有扩张角度??0?、??5?、??10?和??15?的4种缩放型冷却孔叶片的气膜冷却效果,并用平均气膜冷却效率和不均匀系数两个新型评价指标辅以评价叶片冷却效果。研究结果表明:缩放孔型的扩张角度由??0?增加至??10?的过程中,无论是在叶片压力面还是吸力面上,气膜冷却效率整体呈递增趋势,其纵向平均气膜冷却效率和横向平均气膜冷却效率逐渐增大,不均匀系数降低,冷却效果增强。当扩张角度增大至??15?时,相对于带有??10?孔型的叶片,其压力面和吸力面上的气膜冷却效率出现下降,纵向平均气膜冷却效率和横向平均气膜冷却效率减小,不均匀系数增大,冷却效果变差;在带有不同孔型的叶片的中后缘位置都出现了明显的高冷却区域,带有扩张角度??10?孔型的叶片在该区域的冷却优势更明显;4种孔型在叶片吸力面上气膜覆盖的整体均匀度都要比压力面高。  相似文献   

11.
非定常尾迹对动叶气膜冷却影响的数值模拟   总被引:1,自引:0,他引:1  
采用SST k-ω模型在非定常尾迹情况下,分别模拟了3种转速(500 r/min、1000 r/rain和2000 r/min)和三种射流比(0.5、1和2)对动叶前缘气膜冷却效率的影响.结果表明,选择使得冷却射流与主流掺混后,在几乎整个叶盆区域形成类漩涡结构.在M-1的条件下,转速越高使得动叶前缘气膜孔问及压力面气膜...  相似文献   

12.
采用VOF和RNGk-ε紊流模型模拟突扩突跌型中闸室出口高速三维掺气射流。突扩掺气射流冲击壁面的反射作用使近壁流动具有强烈的各向异性,反射流向洞顶扩散形成水翅,突扩宽度和闸室出口水流佛汝德数是影响水翅的主要因素。出闸射流碰撞泄洪洞底板后,反射形成侧壁压力中心,其周围具有较大的压力梯度,容易诱发剪切空化。  相似文献   

13.
在实验进行了渣浆泵ADI叶片的模拟磨拟磨蚀试验,并在扫描电镜(SEM)下观察ADI叶片破坏的宏观和微观形貌,结果表明ADI叶片的磨蚀情况不同于灰口铸铁等一般脆性材料,叶片的磨蚀主要集中在头部,中部至尾部的吸力面和压力面等部位,其中以尾部吸力面的破坏最为严重,结合水力条件分析叶片的磨蚀特性可知,叶片不同部位的磨蚀差异是由于 在叶片不同位置的水流特性的不同所致。  相似文献   

14.
压力脉动是影响贯流泵稳定运行的关键因素之一,本文采用大涡模拟对其内部流场进行分析总结,研究表明:压力脉动主要受叶轮旋转及动静相互干扰的影响;叶轮外缘与壁面间隙的存在,使小部分流体会从高压压力面流向低压吸入面出现回流,而加剧了压力脉动的影响,其幅值为进口压力脉动幅值的38倍;在大流量和小流量下压力脉动幅值均大于设计工况下的压力脉动幅值,导叶的整流特性减弱了叶轮压力脉动的影响;非设计工况下,在叶片进口边处,压力脉动幅频谱幅值最大,水力激振与叶轮旋转的影响相互叠加,在小流量下幅频谱幅值最大约为设计工况的1.5倍,在大流量下约为1.1倍。  相似文献   

15.
采用k-ε紊流模型对非定常条件下动静叶栅之间的影响进行了数值模拟,研究了动静叶栅之间不同轴向间距时尾迹对动叶的影响,并对非定常流动机理进行了分析。研究表明,在非定常流动条件下静叶对下游动叶压力面没有太大影响,对动叶的影响主要集中在动叶前缘以及动叶吸力面扩压段起始处等位置,随着轴向间距的增大,气流的掺混作用减弱,尾迹的作用也逐渐衰弱,对动叶的影响就越来越小。  相似文献   

16.
Film cooling is among the basic methods used for thermal protection of blades in modern high-temperature gas turbines. Results of computer simulation of film cooling with coolant injection via a row of conventional inclined holes or a row of holes in a trench are presented in this paper. The ANSYS CFX 14 commercial software package was used for CFD-modeling. The effect is studied of the mainstream turbulence on the film cooling efficiency for the blowing ratio range between 0.6 and 2.3 and three different turbulence intensities of 1, 5, and 10%. The mainstream velocity was 150 and 400 m/s, while the temperatures of the mainstream and the injected coolant were 1100 and 500°C, respectively. It is demonstrated that, for the coolant injection via one row of trenched holes, an increase in the mainstream turbulence intensity reduces the film cooling efficiency in the entire investigated range of blowing ratios. It was revealed that freestream turbulence had varied effects on the film cooling efficiency depending on the blowing ratio and mainstream velocity in a blade channel. Thus, an increase in the mainstream turbulence intensity from 1 to 10% decreases the surface-averaged film cooling efficiency by 3–10% at a high mainstream velocity (400 m/s) in the blade channel and by 12–23% at a moderate velocity (of 150 m/s). Here, lower film cooling efficiencies correspond to higher blowing ratios. The effect of mainstream turbulence intensity on the film cooling efficiency decreases with increasing the mainstream velocity in the modeled channel for both investigated configurations.  相似文献   

17.
随着贯流式水轮机发电技术的日益成熟,利用其回收循环水系统余压能的工业应用越来越多。本文将一维特征线(MOC)方法与三维计算流体力学(CFD)方法相结合,开发了一维管网和三维贯流式水轮机耦合模拟方法,模拟了真实系统中贯流式水轮机飞逸过程,探究了该过程中故障水轮机流动特性及转轮受力特性。主要结果表明:由稳态工况到飞逸状态所需的时间随着转动惯量减小而变短;转轮和尾水管域的监测点压力脉动振幅高值均发生在转轮叶频及其高次谐波;飞逸过程中,转轮所受轴向力大幅下降,而径向力表现出大幅增加且剧烈振荡特性;转轮叶片表面压力出现明显的交变规律,负压区位于进水侧叶缘处;尾水管内逐渐形成较大旋涡,并沿着流动方向逐渐向管道壁面发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号