首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metric learning has been widely studied in machine learning due to its capability to improve the performance of various algorithms. Meanwhile, multi-task learning usually leads to better performance by exploiting the shared information across all tasks. In this paper, we propose a novel framework to make metric learning benefit from jointly training all tasks. Based on the assumption that discriminative information is retained in a common subspace for all tasks, our framework can be readily used to extend many current metric learning methods. In particular, we apply our framework on the widely used Large Margin Component Analysis (LMCA) and yield a new model called multi-task LMCA. It performs remarkably well compared to many competitive methods. Besides, this method is able to learn a low-rank metric directly, which effects as feature reduction and enables noise compression and low storage. A series of experiments demonstrate the superiority of our method against three other comparison algorithms on both synthetic and real data.  相似文献   

2.
Several kernel-based methods for multi-task learning have been proposed,which leverage relations among tasks as regularization to enhance the overall learning accuracies.These methods assume that the tasks share the same kernel,which could limit their applications because in practice different tasks may need different kernels.The main challenge of introducing multiple kernels into multiple tasks is that models from different reproducing kernel Hilbert spaces(RKHSs) are not comparable,making it difficult to exploit relations among tasks.This paper addresses the challenge by formalizing the problem in the square integrable space(SIS).Specially,it proposes a kernel-based method which makes use of a regularization term defined in SIS to represent task relations.We prove a new representer theorem for the proposed approach in SIS.We further derive a practical method for solving the learning problem and conduct consistency analysis of the method.We discuss the relationship between our method and an existing method.We also give an SVM(support vector machine)based implementation of our method for multi-label classification.Experiments on an artificial example and two real-world datasets show that the proposed method performs better than the existing method.  相似文献   

3.
The problem of clustering with side information has received much recent attention and metric learning has been considered as a powerful approach to this problem. Until now, various metric learning methods have been proposed for semi-supervised clustering. Although some of the existing methods can use both positive (must-link) and negative (cannot-link) constraints, they are usually limited to learning a linear transformation (i.e., finding a global Mahalanobis metric). In this paper, we propose a framework for learning linear and non-linear transformations efficiently. We use both positive and negative constraints and also the intrinsic topological structure of data. We formulate our metric learning method as an appropriate optimization problem and find the global optimum of this problem. The proposed non-linear method can be considered as an efficient kernel learning method that yields an explicit non-linear transformation and thus shows out-of-sample generalization ability. Experimental results on synthetic and real-world data sets show the effectiveness of our metric learning method for semi-supervised clustering tasks.  相似文献   

4.
针对输电线路小金具缺失的检测问题,对小金具缺失算法的推理加速进行了研究,采用了多任务学习的方法,将小金具缺失检测任务使用一个Swin Transformer [26]主干网络连接和多个MLP任务头的方式进行多任务学习和多任务推理,并进行了单任务学习和多任务学习的精度和性能对比实验,最后还验证了在多任务学习中无缝增加扩展任务,实验结果表明多任务学习的输电线路小金具缺失推理在比单任务学习的推理速度提升了2倍以上,在推理显存占用上降低了22%以上。通过扩展任务实验结果验证了扩展任务的有效性,提高了任务配置的灵活性。  相似文献   

5.
The two last decades have witnessed extensive research on multi-task learning algorithms in diverse domains such as bioinformatics, text mining, natural language processing as well as image and video content analysis. However, all existing multi-task learning methods require either domain-specific knowledge to extract features or a careful setting of many input parameters. There are many disadvantages associated with prior knowledge requirements for feature extraction or parameter-laden approaches. One of the most obvious problems is that we may find a wrong or non-existent pattern because of poorly extracted features or incorrectly set parameters. In this work, we propose a feature-free and parameter-light multi-task clustering framework to overcome these disadvantages. Our proposal is motivated by the recent successes of Kolmogorov-based methods on various applications. However, such methods are only defined for single-task problems because they lack a mechanism to share knowledge between different tasks. To address this problem, we create a novel dictionary-based compression dissimilarity measure that allows us to share knowledge across different tasks effectively. Experimental results with extensive comparisons demonstrate the generality and the effectiveness of our proposal.  相似文献   

6.
Flexible latent variable models for multi-task learning   总被引:1,自引:1,他引:0  
Given multiple prediction problems such as regression or classification, we are interested in a joint inference framework that can effectively share information between tasks to improve the prediction accuracy, especially when the number of training examples per problem is small. In this paper we propose a probabilistic framework which can support a set of latent variable models for different multi-task learning scenarios. We show that the framework is a generalization of standard learning methods for single prediction problems and it can effectively model the shared structure among different prediction tasks. Furthermore, we present efficient algorithms for the empirical Bayes method as well as point estimation. Our experiments on both simulated datasets and real world classification datasets show the effectiveness of the proposed models in two evaluation settings: a standard multi-task learning setting and a transfer learning setting.  相似文献   

7.
Both the quality and quantity of training data have significant impact on the accuracy of rank functions in web search. With the global search needs, a commercial search engine is required to expand its well tailored service to small countries as well. Due to heterogeneous intrinsic of query intents and search results on different domains (i.e., for different languages and regions), it is difficult for a generic ranking function to satisfy all type of queries. Instead, each domain should use a specific well tailored ranking function. In order to train each ranking function for each domain with a scalable strategy, it is critical to leverage existing training data to enhance the ranking functions of those domains without sufficient training data. In this paper, we present a boosting framework for learning to rank in the multi-task learning context to attack this problem. In particular, we propose to learn non-parametric common structures adaptively from multiple tasks in a stage-wise way. An algorithm is developed to iteratively discover super-features that are effective for all the tasks. The estimation of the regression function for each task is then learned as linear combination of those super-features. We evaluate the accuracy of multi-task learning methods for web search ranking using data from multiple domains from a commercial search engine. Our results demonstrate that multi-task learning methods bring significant relevance improvements over existing baseline method.  相似文献   

8.
Distance metric learning is rather important for measuring the similarity (/dissimilarity) of two instances in many pattern recognition algorithms. Although many linear Mahalanobis metric learning methods can be extended to their kernelized versions for dealing with the nonlinear structure data, choosing the proper kernel and determining the kernel parameters are still tough problems. Furthermore, the single kernel embedded metric is not suited for the problems with multi-view feature representations. In this paper, we address the problem of metric learning with multiple kernels embedding. By analyzing the existing formulations of metric learning with multiple-kernel embedding, we propose a new framework to learn multi-metrics as well as the corresponding weights jointly, the objective function can be shown to be convex and it can be converted to be a multiple kernel learning-support vector machine problem, which can be solved by existing methods. The experiments on single-view and multi-view data show the effectiveness of our method.  相似文献   

9.
Motivated by real applications, heterogeneous learning has emerged as an important research area, which aims to model the coexistence of multiple types of heterogeneity. In this paper, we propose a heterogeneous representation learning model with structured sparsity regularization (HERES) to learn from multiple types of heterogeneity. It aims to leverage the rich correlations (e.g., task relatedness, view consistency, and label correlation) and the prior knowledge (e.g., the soft-clustering of tasks) of heterogeneous data to improve learning performance. To this end, HERES integrates multi-task, multi-view, and multi-label learning into a principled framework based on representation learning to model the complex correlations and employs the structured sparsity to encode the prior knowledge of data. The objective is to simultaneously minimize the reconstruction loss of using the factor matrices to recover the heterogeneous data, and the structured sparsity imposed on the model. The resulting optimization problem is challenging due to the non-smoothness and non-separability of structured sparsity. We reformulate the problem by using the auxiliary function and prove that the reformulation is separable, which leads to an efficient algorithm family for solving structured sparsity penalized problems. Furthermore, we propose various HERES models based on different loss functions and subsume them into the weighted HERES, which is able to handle missing data. The experimental results in comparison with state-of-the-art methods demonstrate the effectiveness of the proposed approach.  相似文献   

10.
针对现有方法在处理多源数据时忽视数据源之间关联性的问题,提出了一种可以同时实现多分类效果的多源学习框架。该框架将不同的数据源看作多个相关的任务,将多源问题转换为经典的多任务学习问题,通过提取数据源之间的关联,来提高单个数据源的分类性能。此外,该框架利用聚类分析原理,对带标记样本实现多分类效果。实验结果表明,该框架优于只针对单个数据源学习的单任务学习框架和只针对二分类进行处理的传统的多任务学习框架。  相似文献   

11.
The goal of image annotation is to automatically assign a set of textual labels to an image to describe the visual contents thereof. Recently, with the rapid increase in the number of web images, nearest neighbor (NN) based methods have become more attractive and have shown exciting results for image annotation. One of the key challenges of these methods is to define an appropriate similarity measure between images for neighbor selection. Several distance metric learning (DML) algorithms derived from traditional image classification problems have been applied to annotation tasks. However, a fundamental limitation of applying DML to image annotation is that it learns a single global distance metric over the entire image collection and measures the distance between image pairs in the image-level. For multi-label annotation problems, it may be more reasonable to measure similarity of image pairs in the label-level. In this paper, we develop a novel label prediction scheme utilizing multiple label-specific local metrics for label-level similarity measure, and propose two different local metric learning methods in a multi-task learning (MTL) framework. Extensive experimental results on two challenging annotation datasets demonstrate that 1) utilizing multiple local distance metrics to learn label-level distances is superior to using a single global metric in label prediction, and 2) the proposed methods using the MTL framework to learn multiple local metrics simultaneously can model the commonalities of labels, thereby facilitating label prediction results to achieve state-of-the-art annotation performance.  相似文献   

12.
In this paper, we present a probabilistic multi-task learning approach for visual saliency estimation in video. In our approach, the problem of visual saliency estimation is modeled by simultaneously considering the stimulus-driven and task-related factors in a probabilistic framework. In this framework, a stimulus-driven component simulates the low-level processes in human vision system using multi-scale wavelet decomposition and unbiased feature competition; while a task-related component simulates the high-level processes to bias the competition of the input features. Different from existing approaches, we propose a multi-task learning algorithm to learn the task-related “stimulus-saliency” mapping functions for each scene. The algorithm also learns various fusion strategies, which are used to integrate the stimulus-driven and task-related components to obtain the visual saliency. Extensive experiments were carried out on two public eye-fixation datasets and one regional saliency dataset. Experimental results show that our approach outperforms eight state-of-the-art approaches remarkably.  相似文献   

13.
处理不平衡数据分类时,传统支持向量机技术(SVM)对少数类样本识别率较低。鉴于SVM+技术能利用样本间隐藏信息的启发,提出了多任务学习的不平衡SVM+算法(MTL-IC-SVM+)。MTL-IC-SVM+基于SVM+将不平衡数据的分类表示为一个多任务的学习问题,并从纠正分类面的偏移出发,分别赋予多数类和少数类样本不同的错分惩罚因子,且设置少数类样本到分类面的距离大于多数类样本到分类面的距离。UCI数据集上的实验结果表明,MTL-IC-SVM+在不平衡数据分类问题上具有较高的分类精度。  相似文献   

14.
In this paper we propose a novel algorithm for multi-task learning with boosted decision trees. We learn several different learning tasks with a joint model, explicitly addressing their commonalities through shared parameters and their differences with task-specific ones. This enables implicit data sharing and regularization. Our algorithm is derived using the relationship between ? 1-regularization and boosting. We evaluate our learning method on web-search ranking data sets from several countries. Here, multi-task learning is particularly helpful as data sets from different countries vary largely in size because of the cost of editorial judgments. Further, the proposed method obtains state-of-the-art results on a publicly available multi-task dataset. Our experiments validate that learning various tasks jointly can lead to significant improvements in performance with surprising reliability.  相似文献   

15.
何克磊  史颖欢  高阳 《软件学报》2020,31(5):1573-1584
传统的深度多任务网络通常在不同任务之间共享网络的大部分层(即特征表示).由于这样做会忽视不同任务各自的特殊性,所以往往会制约它们适应数据的能力.提出一种层级混合的多任务全卷积网络HFFCN,以解决CT图像中的前列腺分割问题.特别地,使用一个多任务框架来解决这个问题,这个框架包括:1)一个分割前列腺的主任务;和2)一个回归前列腺边界的辅助任务.在这里,第二个任务主要是用来精确地描述在CT图像中模糊的前列腺边界.因此,提出的HFFCN架构是一个双分支的结构,包含一个编码主干和两个解码分支.不同于传统的多任务网络,提出了一个新颖的信息共享模块,用以在两个解码分支之间共享信息.这使得HFFCN可以:1)学习任务的通用层级信息;2)同时保留一些不同任务各自的特征表示.在一个包含有313个病人的313张计划阶段图片的CT图像数据集上做了详细的实验,实验结果证明了所提的HFFCN网络可以超越现有其他先进的分割方法,或者是传统的多任务学习模型.  相似文献   

16.
A Kernel Approach for Semisupervised Metric Learning   总被引:1,自引:0,他引:1  
While distance function learning for supervised learning tasks has a long history, extending it to learning tasks with weaker supervisory information has only been studied recently. In particular, some methods have been proposed for semisupervised metric learning based on pairwise similarity or dissimilarity information. In this paper, we propose a kernel approach for semisupervised metric learning and present in detail two special cases of this kernel approach. The metric learning problem is thus formulated as an optimization problem for kernel learning. An attractive property of the optimization problem is that it is convex and, hence, has no local optima. While a closed-form solution exists for the first special case, the second case is solved using an iterative majorization procedure to estimate the optimal solution asymptotically. Experimental results based on both synthetic and real-world data show that this new kernel approach is promising for nonlinear metric learning  相似文献   

17.
Learning a compact predictive model in an online setting has recently gained a great deal of attention.The combination of online learning with sparsity-inducing regularization enables faster learning with a smaller memory space than the previous learning frameworks.Many optimization methods and learning algorithms have been developed on the basis of online learning with L1-regularization.L1-regularization tends to truncate some types of parameters,such as those that rarely occur or have a small range of values,unless they are emphasized in advance.However,the inclusion of a pre-processing step would make it very difficult to preserve the advantages of online learning.We propose a new regularization framework for sparse online learning.We focus on regularization terms,and we enhance the state-of-the-art regularization approach by integrating information on all previous subgradients of the loss function into a regularization term.The resulting algorithms enable online learning to adjust the intensity of each feature’s truncations without pre-processing and eventually eliminate the bias of L1-regularization.We show theoretical properties of our framework,the computational complexity and upper bound of regret.Experiments demonstrated that our algorithms outperformed previous methods in many classification tasks.  相似文献   

18.
Approaches to distance metric learning (DML) for Mahalanobis distance metric involve estimating a parametric matrix that is associated with a linear transformation. For complex pattern analysis tasks, it is necessary to consider the approaches to DML that involve estimating a parametric matrix that is associated with a nonlinear transformation. One such approach involves performing the DML of Mahalanobis distance in the feature space of a Mercer kernel. In this approach, the problem of estimation of a parametric matrix of Mahalanobis distance is formulated as a problem of learning an optimal kernel gram matrix from the kernel gram matrix of a base kernel by minimizing the logdet divergence between the kernel gram matrices. We propose to use the optimal kernel gram matrices learnt from the kernel gram matrix of the base kernels in pattern analysis tasks such as clustering, multi-class pattern classification and nonlinear principal component analysis. We consider the commonly used kernels such as linear kernel, polynomial kernel, radial basis function kernel and exponential kernel as well as hyper-ellipsoidal kernels as the base kernels for optimal kernel learning. We study the performance of the DML-based class-specific kernels for multi-class pattern classification using support vector machines. Results of our experimental studies on benchmark datasets demonstrate the effectiveness of the DML-based kernels for different pattern analysis tasks.  相似文献   

19.
本文针对多个车牌识别任务之间存在竞争和冲突,导致难以同时提高多个车牌的识别率的问题,提出基于多目标优化多任务学习的端到端车牌识别方法.首先,通过分析某些车牌识别任务容易占主导地位,而其他任务无法得到充分优化的问题,建立基于多任务学习的车牌识别模型.接着,针对字符分割造成车牌识别准确率较低、鲁棒性较差的问题,提出基于多任务学习的端到端车牌识别方法.最后,针对多个车牌识别任务间难以权衡的问题,提出一种基于多目标优化的多任务学习方法,以提高多个车牌识别的准确率.将本文所提方法在标准车牌数据集上进行测试,实验结果验证了该方法的有效性和优越性,其他代表性方法相比可以提高车牌识别的准确率、快速性和鲁棒性.  相似文献   

20.
针对当前人脸识别中姿态变化会影响识别性能,以及姿态恢复过程中脸部局部细节信息容易丢失的问题,提出一种基于多任务学习的多姿态人脸重建与识别方法——多任务学习堆叠自编码器(MtLSAE)。该方法通过运用多任务学习机制,联合考虑人脸姿态恢复和脸部局部细节信息保留这两个相关的任务,在步进逐层恢复正面人脸姿态的同时,引入非负约束稀疏自编码器,使得非负约束稀疏自编码器能够学习到人脸部的部分特征;其次在姿态恢复和局部信息保留两个任务之间通过共享参数的方式来学习整个网络框架;最后将重建出来的正脸图像通过Fisherface进行降维并提取具有判别信息的特征,并用最近邻分类器来识别。实验结果表明,MtLSAE方法获得了较好的姿态重建质量,保留的局部纹理信息清晰,而且与局部Gabor二值模式(LGBP)、基于视角的主动外观模型(VAAM)以及堆叠步进自编码器(SPAE)等经典方法相比,识别率性能得以提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号