首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 896 毫秒
1.
This paper studies the hybrid stochastic delay differential equations (SDDEs) with asynchronous switching and discrete observations. For SDDEs based on discrete observations, there are two methods: The discrete-time approach and the input time delay method. For linear solvable equations, the discrete-time approach is feasible but for unsolvable nonlinear hybrid SDSs, the results of the discrete-time approach have not been discussed. So, it is natural to ask: Is the discrete-time approach still workable for nonlinear hybrid SDSs? This paper focuses on this problem. By using tools of stochastic analysis, constructing Lyapunov functional and using the discrete-time approach, the stability of hybrid SDSs by discrete-time feedback control is obtained. Finally, a numerical example is presented to verify the theoretical result.  相似文献   

2.
This paper deals with the problem of robust analysis and control of a class of nonlinear discrete-time systems with (constant) uncertain parameters. For the analysis problem we use a polynomial Lyapunov function and we generalize, for nonlinear systems, the “extended stability” notion proposed by Oliveira et al. (1999) in the context of linear discrete-time uncertain systems. As a result, we propose an LMI optimization problem to maximize an estimate of the domain of attraction, and also extend this approach to the synthesis problem by considering parameter-dependent Lyapunov functions and nonlinear multipliers. Numerical examples illustrate the approach and show its potential for solving analysis and control problems of nonlinear discrete-time systems.  相似文献   

3.
4.
This paper considers the solution of a real-time optimization problem using adaptive extremum seeking control for a class of unknown discrete-time nonlinear systems. It is assumed that the equations describing the dynamics of the nonlinear system and the cost function to be minimized are unknown and that the objective function is measured. The main contribution of the paper is to formulate the extremum-seeking problem as a time-varying discrete-time estimation problem. The proposed approach is shown to avoid the need for averaging results which minimizes the impact of the choice of dither signals on the performance of the extremum seeking control system. Several examples are used to illustrate the effectiveness of the proposed technique.  相似文献   

5.
A feedback controller that solves the discrete-time nonlinear servomechanism problem relies on the solution of a set of nonlinear functional equations known as the discrete regulator equations. The exact solution of the discrete regulator equations is usually unavailable due to the nonlinearity of the system. The paper proposes to approximately solve the discrete regulator equations using a feedforward neural network. This approach leads to an effective way to practically solve the discrete nonlinear servomechanism problem. The approach has been illustrated using the well-known inverted pendulum on a cart system. The simulation shows that the control law designed by the proposed approach performs much better than the conventional linear control law.  相似文献   

6.
This article presents a new neural network-based approach for self-tuning control of nonlinear single-input single-output (SISO) discrete-time dynamic systems. According to the approach, a neural network ARMAX (NN-ARMAX) model of the system is identified and continuously updated, using an online training algorithm. Control design is accomplished by solving an optimal discrete-time linear quadratic tracking problem using an observer-type linear state-space Kalman innovation model, which is built from the parameters of a local linear version of the NN-ARMAX model. The state-feedback control law is implemented using the Kalman state, which is calculated without estimating the noise covariance properties. The proposed control approach is shown to be very effective and outperforms the self-tuning control approach based on a linear ARMAX model on two simulation examples.  相似文献   

7.
This paper addresses the problem of satisfying pointwise-in-time input and/or state hard constraints in nonlinear control systems. The approach is based on conceptual tools of predictive control and consists of adding to a primal compensated nonlinear system a reference governor. This is a discrete-time device which online handles the reference to be tracked, taking into account the current value of the state in order to satisfy the prescribed constraints. The resulting hybrid system is proved to fulfil the constraints as well as stability and tracking requirements  相似文献   

8.
The present research work aims at the development of a systematic method to arbitrarily assign the zero dynamics of a nonlinear discrete-time real analytic system by constructing the requisite synthetic output maps. The problem under consideration is motivated by the need to adequately address the control problem of nonminimum-phase nonlinear discrete-time systems, since the latter represent a rather broad class of systems due to the well-known effect of sampling on the stability of zero-dynamics. In the proposed approach, the above control objective can be attained through: (i) a systematic computation of synthetic output maps that induce minimum-phase behavior while being statically equivalent to the original output maps (both vanish on the equilibrium manifold) and (ii) the subsequent integration into the methodological framework of currently available nonminimum-phase compensation schemes for nonlinear discrete-time systems that rely on output redefinition. The mathematical formulation of the zero-dynamics assignment problem is realized via a system of nonlinear functional equations, and a rather general set of necessary and sufficient conditions for solvability is derived. The solution to the above system of functional equations can be proven to be locally analytic, and this enables the development of a solution method that is easily programmable with the aid of a symbolic software package. The synthetic output maps that induce the prescribed zero dynamics for the original nonlinear discrete-time system can be explicitly computed on the basis of the solution to the aforementioned system of functional equations.  相似文献   

9.
Elmer  Ilya   《Automatica》2002,38(12):2063-2073
This paper proposes a new approach to reference governor design. As in prior literature, the governor accepts input commands and modifies their evolution so that specified pointwise-in-time constraints on state and control variables are satisfied. The new approach applies to general discrete-time and continuous-time nonlinear systems with uncertainties. It relies on safety properties provided by sublevel sets of equilibria-parameterized functions. These functions need not be Lyapunov functions, and the corresponding sublevel sets need not be positively invariant. Technical conditions that capture the bare essentials of what is needed are identified and the usual desirable properties of reference governors are established. The new approach significantly broadens the class of methods available for constructing the nonlinear function that is required in the implementation of the reference governors. This advantage is illustrated in a nonlinear control problem where off-line, computer-based simulation is the basis for constructing the nonlinear function.  相似文献   

10.
ABSTRACT

In existing researches on containment control of heterogeneous multi-agent systems (MASs), the solution is usually dependent on the solvability of regulator equations. However, the closed-form solution of many nonlinear regulator equations of systems is rarely obtained. Towards this end, in this paper the containment control problem of heterogeneous discrete-time nonlinear MASs subject to parameter uncertainties is considered, and the power series approach is adopted to solve complex regulator equations by decomposing them into a series of solvable linear equations. Then, a distributed robust control law based on internal model principle is presented by utilising the solution of the linear equations. Theoretical analysis shows that under certain assumptions asymptotic containment control is achieved for the heterogeneous discrete-time nonlinear MASs with sufficiently small parameter perturbations. Finally, a numerical simulation is implemented to verify the proposed control law.  相似文献   

11.
In this study, a model reference fuzzy tracking control design for nonlinear discrete-time systems with time-delay is introduced. First, the Takagi and Sugeno (TS) fuzzy model is employed to approximate a nonlinear discrete-time system with time-delay. Next, based on the fuzzy model, a fuzzy observer-based fuzzy controller is developed to reduce the tracking error as small as possible for all bounded reference inputs. The advantage of proposed tracking control design is that only a simple fuzzy observer-based controller is used in our approach without feedback linearization technique and complicated adaptive scheme. By the proposed method, the fuzzy tracking control design problem is parameterized in terms of a linear matrix inequality problem (LMIP). The LMIP can be efficiently solved using the convex optimization techniques. Simulation example is given to illustrate the design procedures and tracking performance of the proposed method.  相似文献   

12.
This paper presents results obtained for the control of set-valued discrete-time dynamical systems. Such systems model nonlinear systems subject to persistent bounded noise. A robust control problem for such systems is introduced. The problem is formulated as a dynamic game, wherein the controller plays against the set-valued system. Both necessary and sufficient conditions in terms of (stationary) dynamic programming equalities are presented. The output feedback problem is solved using the concept of an information state, where a decoupling between estimation and control is obtained. The methods yield a conceptual approach for constructing controlled-invariant sets and stabilizing controllers for uncertain nonlinear systems  相似文献   

13.
The present work proposes a new approach to the nonlinear discrete-time feedback stabilization problem with pole-placement. The problem's formulation is realized through a system of nonlinear functional equations and a rather general set of necessary and sufficient conditions for solvability is derived. Using tools from functional equations theory, one can prove that the solution to the above system of nonlinear functional equations is locally analytic, and an easily programmable series solution method can be developed. Under a simultaneous implementation of a nonlinear coordinate transformation and a nonlinear discrete-time state feedback control law that are both computed through the solution of the system of nonlinear functional equations, the feedback stabilization with pole-placement design objective can be attained under rather general conditions. The key idea of the proposed single-step design approach is to bypass the intermediate step of transforming the original system into a linear controllable one with an external reference input associated with the classical exact feedback linearization approach. However, since the proposed method does not involve an external reference input, it cannot meet other control objectives such as trajectory tracking and model matching.  相似文献   

14.
This paper deals with the problem of finite-time-horizon robust H control via measurement feedback, for affine nonlinear systems with nonlinear time-varying parameter uncertainty. The problem addressed is the design of a control law, which processes the measured output and guarantees a prescribed level of closed-loop disturbance attenuation. Conditions for the existence of such a controller are obtained by solving an auxiliary control problem for a related system which is obtained from the original one by converting the parameter uncertainty into exogenous bounded energy signals. This approach allows us to apply the recently developed H nonlinear control techniques to solve the robust control problem. The problem is investigated in both the continuous- and discrete-time cases. The results are demonstrated by a simple example. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a data-driven optimal terminal iterative learning control (TILC) approach for linear and nonlinear discrete-time systems. The iterative learning control law is updated from only terminal output tracking error instead of entire output trajectory tracking error. The only required knowledge of a controlled system is that the Markov matrices of linear systems or the partial derivatives of nonlinear systems with respect to control inputs are bounded. Rigorous analysis and convergence proof are developed with sufficient conditions for the terminal ILC design and the results are developed for both linear and nonlinear discrete-time systems. Simulation results illustrate the applicability and effectiveness of the proposed approach.  相似文献   

16.
The present research work proposes a new approach to the discrete-time nonlinear observer design problem. Based on the early ideas that influenced the development of the linear Luenberger observer, the proposed approach develops a nonlinear analogue. The formulation of the discrete-time nonlinear observer design problem is realized via a system of first-order linear nonhomogeneous functional equations, and a rather general set of necessary and sufficient conditions for solvability is derived using results from functional equations theory. The solution to the above system of functional equations can be proven to be locally analytic and this enables the development of a series solution method, that is easily programmable with the aid of a symbolic software package.  相似文献   

17.
受扰非线性离散系统的前馈反馈最优控制   总被引:1,自引:2,他引:1  
利用逐次逼近法研究含外部扰动的非线性离散系统的线性二次型前馈反馈最优控制问题.首先将系统的最优控制问题转化为非线性两点边值问题族.其次,构造了该问题族的由精确线性项和非线性补偿项组成的解序列,并证明了解序列一致收敛到系统的最优解.最后,通过截取最优控制序列解中非线性补偿项的有限项,得到系统的前馈反馈次优控制(FFSOC)律及设计算法.仿真算例表明,该算法容易实现,且对抑制外部扰动的鲁棒性优于经典的反馈次优控制(FSOC).  相似文献   

18.
In this paper, we aim to solve the finite horizon optimal control problem for a class of discrete-time nonlinear systems with unfixed initial state using adaptive dynamic programming (ADP) approach. A new ε-optimal control algorithm based on the iterative ADP approach is proposed which makes the performance index function converge iteratively to the greatest lower bound of all performance indices within an error according to ε within finite time. The optimal number of control steps can also be obtained by the proposed ε-optimal control algorithm for the situation where the initial state of the system is unfixed. Neural networks are used to approximate the performance index function and compute the optimal control policy, respectively, for facilitating the implementation of the ε-optimal control algorithm. Finally, a simulation example is given to show the results of the proposed method.  相似文献   

19.
The adaptive filtering and control problem for stochastic distributed systems involving space-dependent random parameters is treated using the partitioning/nonlinear separation approach. Both continuous-time and discrete-time models are considered.  相似文献   

20.
Model predictive control (MPC) is a well-established controller design strategy for linear process models. Because many chemical and biological processes exhibit significant nonlinear behaviour, several MPC techniques based on nonlinear process models have recently been proposed. The most significant difference between these techniques is the computational approach used to solve the nonlinear model predictive control (NMPC) optimization problem. Consequently, analysis of NMPC techniques is often connected to the computational approach employed. In this paper, a theoretical analysis of unconstrained NMPC is presented that is independent of the computational approach. A nonlinear discrete-time, state-space model is used to predict the effects of future inputs on future process outputs. It is shown that model inverse, pole-placement, and steady-state controllers can be obtained by suitable selection of the control and prediction horizons. Moreover, the NMPC optimization problem can be modified to yield nonlinear internal model control (NIMC). The computational requirements of NIMC are considerably less than NMPC, but the NIMC approach is currently restricted to nonlinear models with well-defined and stable inverses. The NIMC controller is shown to provide superior servo and regulatory performance to a linear IMC controller for a continuous stirred tank reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号