首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
连续油管水力压裂摩阻是压裂设计中的重要内容,同时也是压裂能否成功的指标之一。连续油管水力压裂过程中,由于对流体性质、支撑剂、曲率效应等造成的复杂流动理解不足,使得准确预测管内摩阻非常困难,尤其在卷筒上的螺旋段,因而实验成为当前研究连续油管管内摩阻的重要手段。研究认为:在其他条件不变的情况下,摩阻随连续油管管径的增大急剧变小;随压裂液排量增大而增大;随连续油管下入深度的增加总摩阻变小;随黏度和流行指数的增大而增大;随支撑剂积分数增大摩阻先增大而后减少。  相似文献   

2.
连续油管压裂技术由于其安全、经济、高效的特点,已经广泛应用到国外的油气田生产中。为了扩大连续油管的使用范围,辽河油田根据油气田开发生产过程中油井多层压裂的实际需要,形成了连续油管压裂工艺方案,采用水力喷射环空压裂施工工艺进行了连续油管增产作业的探索和研究,并首次现场施工应用成功。压裂结果表明,采用环空压裂可以大幅度地增加流动通道,减少对连续油管的摩阻,提高施工排量,所有层段能够一次改造完成,降低施工成本,提高压裂改造效果,为应用连续油管进行增产作业积攒了宝贵的经验。  相似文献   

3.
大型加砂压裂是开采非常规气藏的核心技术之一,该技术要求将携砂液大排量地挤入地层,从而沟通天然裂缝,形成复杂的网络裂缝系统。但随着排量的增加,压裂液的管柱沿程摩阻将极大地上升,给开采该类非常规气藏带来了极大的挑战。实践表明,油套同注工艺能够有效地降低大型压裂管柱沿程摩阻。采用降阻比公式计算管柱沿程摩阻,并结合流体力学计算管柱清水摩阻,借助当量直径计算不规则断面环空的清水摩阻。以川西实际施工摩阻数据为基础,修正了降阻比公式中的系数,得到一套针对川西油套同注工艺管柱摩阻计算公式。同时以川西×井实际施工数据为基础,计算了整个加砂压裂过程中油套同注工艺的管柱沿程摩阻值,描述了摩阻值随施工排量和砂浓度的动态变化过程,相比同排量下的油管注入,油套同注工艺可降低管柱沿程摩阻55 MPa左右。  相似文献   

4.
水力喷砂分段压裂优化设计与施工   总被引:3,自引:1,他引:2  
依据水力喷砂分段压裂的技术特点结合常规加砂压裂设计方法,建立了水力喷砂分段压裂优化设计方法。通过数值计算,给出了喷嘴数量与施工排量的匹配关系曲线和环空压力与排量的关系曲线,借助实验手段,模拟现场油管与环空注入压裂液的比例研究了压裂液混合液的黏弹性恢复能力和耐剪切性能,为现场水力喷砂射孔喷嘴数量、排量和射流速度的设计,加砂压裂油管和环空排量的优化提供了参考。  相似文献   

5.
在常规技术难以进行有效清砂的井筒作业中,双层连续油管具有明显的技术优势,但该类管柱的受力状态有别于普通连续油管。以冲砂作业为研究对象,结合流体力学推导出了双层连续油管作业的水力摩阻计算公式。计算表明,对长度为4 000m的60.3mm+31.8mm组合双层连续油管,排量相同时,螺旋段单位长度上的摩阻要略高于直管段的压降;排量对摩阻影响显著,例如排量由50L/min增加到150L/min,对应的摩阻压力降则增大6倍以上。通过与现场施工参数相比较,该公式计算结果与实际参数变化趋势吻合较好。为双层连续油管冲砂作业制定合理的参数提供了一定的理论借鉴。  相似文献   

6.
连续油管水力喷射环空压裂技术   总被引:10,自引:2,他引:8  
连续油管水力喷射压裂是解决我国纵向多层压裂难题的有效手段,为深入了解国外连续油管技术,提高国内现有尺寸连续油管应用范围,在连续油管传输压裂与环空压裂两种方式对比分析的基础上,对连续油管水力喷射环空压裂技术的原理、施工工序、摩阻计算、优越性与局限性等进行了全方位的分析。结果认为这种环空压裂方式通过喷砂射孔与环空加砂配合可以拓宽连续油管应用深度,提高国内现有小尺寸连续油管设备利用率,提高喷嘴寿命,增大施工排量,从而具有更高的现场适用性及可操作性。研究成果为引入国外连续油管解决国内多层气藏分压改造难题,以及转变观念进行连续油管水力喷射环空大规模压裂奠定了基础。  相似文献   

7.
液态CO_2干法压裂过程中井筒压力与相态显著影响裂缝起裂和延伸。鉴于此,根据Span-Wagner状态方程,建立了CO_2干法压裂井筒流动传热模型,揭示了CO_2干法压裂过程中井筒压力与相态的变化规律。研究结果表明:CO_2摩阻非常高,在常规施工条件下其摩阻每1 000 m超过10 MPa;排量和油管内径对井筒压降影响非常大,在满足携砂情况下可通过适当降低排量或选用较大管径油管降低摩阻;干法压裂过程中相态转变取决于井底CO_2温度,而井底温度受注入温度影响最大,其次为注入排量和地温梯度,并且几乎不受油管内径影响; CO_2流体密度和黏度与温度成反相关关系,井筒内CO_2黏度仅为0. 08~0. 25 m Pa·s,携砂能力差,加之滤失大,不利于压裂造缝是压裂施工失败的主要原因。研究结果可为CO_2干法压裂和CO_2增能压裂提供理论指导和现场借鉴。  相似文献   

8.
连续油管压裂作业过程中,压裂液除了在连续油管井下直管段流动,同时也会流入缠绕在滚筒上的那部分连续管,螺旋段的流动非常复杂,现有模型的计算结果与工程实际有一定的差距,基于流体力学基本原理,结合直管段摩擦因数公式和螺旋段几何特征,给出了连续油管螺旋段摩擦因数的一般关系式,最后经理论推导建立了完整的连续油管压裂作业管内压降的计算模型。分析了连续油管管径、滚筒直径、排量、黏度和流性指数等参数对管内压降的影响规律。结果表明:该模型的计算结果精度较高;相同条件下,螺旋段的压降总是大于直管段的压降;连续油管管径对压降的影响最大,管径增大近1倍,压降却减小了13倍,而滚筒直径对压降的影响最小,选择不同的滚筒直径,压降几乎未发生变化。  相似文献   

9.
一种改进的预测连续油管环空摩阻压降的计算方法   总被引:1,自引:0,他引:1  
在前期分析计算连续油管管内摩阻压降的基础上,进一步介绍了一种准确确定连续油管环空摩阻压降的计算方法,分析了管道几何尺寸,表面粗糙度,泵排量,流体性能,雷诺数,摩阻系数,偏心度等参数对层流态和紊流太时的环空摩阻压降的影响效果,对各参数的确定,给出了计算公式,并进行了实验验证,还列举了带内管的连续油管环空偏心影响效果的分析方法,较全面地阐述了连续油管的环空水力性能,并给出计算实例。  相似文献   

10.
CO_2泡沫压裂液在管流等过程中的压力降计算关系到整个压裂施工过程的可靠性。模拟现场施工条件,通过室内管流实验研究了高温高压条件下CO_2泡沫压裂液的摩阻特性,分析了压力、温度、泡沫质量和流速对CO_2泡沫压裂液摩阻特性的影响规律。建立了CO_2泡沫压裂液未发泡和发泡状态下的摩阻系数数学计算模型,预测了CO_2泡沫压裂液在不同泵注排量下的管柱摩阻。结果表明,CO_2泡沫压裂液摩擦阻力系数随温度升高、剪切速率和压力的增加而减小,随泡沫质量的增加而增大,当泡沫质量分数大于75%时,摩阻系数降低。压力对摩擦阻力系数的影响较小。通过摩阻系数数学计算模型,计算得到CO_2泡沫压裂液在层流条件下具有较好的增黏效果,紊流条件下的降阻效果较好。相同排量下31/2″油管对应的摩阻小于27/8″油管的摩阻,CO_2泡沫压裂的管柱应选择31/2″油管。认识和评价CO_2泡沫压裂液摩阻特性对现场压裂施工设计具有重要意义。  相似文献   

11.
幂律流体是石油工程领域应用非常广泛的非牛顿流体,为了研究其在连续管螺旋管段的复杂流动状况和压降变化,基于Fluent软件模拟了幂律流体在螺旋管内的流动,分析了管径、滚筒直径、入口速度、流体密度、流体稠度系数以及幂律指数对压降的影响,得到了截面上的压力和速度分布,总结出了螺旋管压降随各个参数的变化规律:在直管段截面压力和速度呈同心圆状规则分布,而在螺旋管截面压力和速度则向外凹陷;螺旋管的湍流核心区较直管段减小,说明曲率增大导致黏性力的作用范围变大;油管压降随入口速度、流体密度、稠度系数和幂律指数的增大而增大,其中幂律指数的影响比稠度系数大得多;压降随管径的增大而减小,滚筒对压降的影响可以忽略;当流速很高时,为了减小压力损失,保证平稳流动,应在保证所需井下压力的基础上选择管径稍大的油管。研究结果可为现场确定连续管和流体的相关参数提供理论指导。  相似文献   

12.
通过数值模拟的方法研究不同曲率下流体在连续管螺旋管段流动的压降,并与经验计算公式的计算数据进行对比。结果表明,连续管螺旋管段由于存在二次流动现象,导致摩阻损失变大,大于直管段的摩阻损失;连续管水力摩阻损失随曲率和流速的增大而增大;随着流速的增大,曲率对摩擦压降损失的影响越明显。最后指出,利用连续管进行酸化压裂作业时,排量大,井底压力高,在这种情况下就需要选用大功率高压泵,如果选用的泵功率不够,会影响作业效果。  相似文献   

13.
近年来,连续油管压裂技术作为一种新型的增产改造工艺已逐渐服务于油气田。受连续油管管串、工具、液体体系等技术限制,连续油管用于加砂压裂作业应用还很有限。结合国内引进大尺寸连续油管以及储备与发展连续油管压裂技术的情况,避开国外跨式封隔器分层压裂与射流压裂的技术与经济限制,探索在国内现有的技术条件下采用连续油管带单个封隔器对直井、已射孔、多层段实施逐层填砂压裂作业的可行性,初步提出了连续油管逐层填砂压裂的工艺流程思路与关键技术要求。  相似文献   

14.
连续管水力喷射压裂机理与试验研究   总被引:5,自引:1,他引:4  
面对我国日益增加的"多井低产"问题,连续管水力喷射压裂技术作为一项能够有效提高单井产量的新技术而备受关注。依托国家863计划的重点课题,探索了连续管水力喷射压裂机理;基于孔内压力分布的数值模拟,验证了水力射流射入孔内的增压作用与水力封隔作用导致孔内压力升高的作用机理,分析了主要参数对孔内压力分布的影响;以连续管管径为重要特征参数,提出了连续管水力喷射压裂3种作业方式。基于试验研究,验证了连续管水力喷射压裂机理和数值模拟计算结果,认为在相同喷嘴压降下,孔内压力随着围压增加近似于呈线性增大;在井眼垂深较大、地层破裂压力较高时,推荐使用高一些的喷嘴压降,以获得更好的增压作用与水力封隔效果;对于连续管水力喷射压裂,通常采用管径不小于50·8mm(2英寸)的连续管。  相似文献   

15.
《石油机械》2012,40(3):103-108
To solve the increasingly serious problem of "many wells,but low productivity"in China,the hydraulic jetting fracturing technology with coiled tubing,as a new measure for effectively improving the production rate of individual well and enhancing oil and gas recovery,merits much attention nowadays.On the basis of study of the hydraulic jetting fracturing mechanism with coiled tubing and numerical simulation of pressure distribution inside the pores,the mechanism of pressure rise inside the pores caused by the pressure boost action within the jetting pore and the hydraulic isolation action is examined,and the influence of main parameters on the pressure distribution inside the pores is analyzed.3 kinds of operating methods of hydraulic jetting fracturing with coiled tubing are raised with the tubular diameter of coiled tubing as an important feature parameter.According to the experimental study,the fracturing mechanism and computational results of numerical simulation are both examined.It is considered that under the same pressure drop of jet nozzle,the pressure inside the pores increases with the confining pressure nearly at a linear state.When the vertical depth of the borehole is rather big and the rupture pressure of the formation is higher,it is recommended to use higher pressure drop of jet nozzle for achieving better pressure boost and hydraulic isolation effect.For the hydraulic jetting fracturing with coiled tubing,the coiled tubing with tubular diameter not less than 50.8 mm(2 in.) is usually used.  相似文献   

16.
常用的漏掉产层增产技术主要为连续油管跨隔压裂、连续油管逐层填砂顶封压裂,这些技术通常应用于埋藏较浅的储层。但对于埋藏较深的漏掉产层进行改造作业时,存在摩擦损失大、井口压力高、施工排量小的问题。连续油管喷砂射孔具有无压实作用和降低地层破裂压力的优点;连续油管筛管改流跨隔压裂工艺,通过将筛管和双封隔器相结合,在上部封隔器处通过筛管将油套环空的压裂液改流进入油管,油管中的压裂液经过下部封隔器后由节流喷嘴喷出,实现对目的层改造作业,由于施工过程中压裂液大部分在油套环空中流动,降低了沿程摩阻。该组合工艺充分利用了连续油管的优点,并克服施工排量小、井口压力高的问题,在准噶尔盆地储层深度3 660 m的××井中成功应用,施工过程中的最高排量为4.6 m3/min,最高井口压力43.8 MPa,压裂后增产效果明显。  相似文献   

17.
介绍了CT80钢西31.8mm×3.18mm国产连续油管在青海油田的应用情况,包括低压气井N2泡沫冲砂、喷射冲洗水井射孔炮眼、油井拖动酸化、通井刮削、喷砂及水力切割、喷砂射孔环空压裂以及水平井作业等工艺应用。并对国产连续油管在青海高原油气田复杂环境的129井次的现场施工应用进行了综合评价,给出了CT80国产连续油管应用41井次后力学性能与应用前的对比结果。现场应用结果表明:CT80国产连续油管能够适应高原复杂环境的施工作业.实现了高原油气田降本增效。  相似文献   

18.
苏里格致密砂岩气藏大井组多井型的丛式井组机械分层压裂工艺不能满足多层、高排量压裂技术发展需求。为此,根据体积压裂理论进行了致密气田高排量混合水压裂工艺设计,采用滑溜水+基液+交联液的注入模式,低黏液占比40%~75%,排量6~8 m3/min;研发了连续油管底封分层压裂工具串:导向扶正器+机械式接箍定位器+机械锚定器+Y211封隔器+平衡阀+喷射器+机械式安全丢手接头+连续油管外卡瓦式连接头+连续油管,满足了连续解封和坐封的需求;为确保安全施工,研发了连续油管井口保护器,结合全过程防砂工艺制定了标准地面作业流程,形成了安全作业配套技术,并研发了压裂返排液处理装置,实现了压裂返排液再利用,最终形成苏里格致密气田丛式井组连续油管一体化压裂技术。截至2018年12月底现场试验32个井组201口井,压后单井产量较对比井提高15%,平均单井压裂作业周期由常规模式的19.5 d缩短至11.0 d,提产提速效果显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号