首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
紫金山铜矿生物堆浸提铜酸铁平衡工艺研究   总被引:7,自引:6,他引:7  
介绍了紫金山铜矿生物提铜酸铁平衡工艺试验的研究结果,当采用碳酸钙中和萃余液的终点pH值为2.12时,萃余液中的总铁浓度由29.10 g.L-1下降为2.17 g.L-1,铜的损失率为6.10%,满足了生物堆浸中需要的最佳pH值和总铁浓度。中和法是解决生物堆浸—萃取—电积工艺生产循环中酸过剩、pH值过低和总铁浓度过高的有效方法,但缺点是损失一部分铜于中和渣中。采用碳酸钙作为中和剂,沉淀产物沉降性能好,体积小,易分离处理,终点pH值易控制,铜的损失小,中和剂来源广。  相似文献   

2.
低品位硫化铜矿湿法提铜系统产生大量萃余液,酸浓度和铁含量高,有价金属铜、锌、铝含量低。不同pH区间金属中和沉淀行为存在差异,采用pH控制可实现大量的铁与其他有价金属分离的目的。金属硫化物的溶度积存在差异,通过硫化法串联靶向回收铜、锌;铝可通过中和法回收。串联靶向回收工艺可实现萃余液中多种有价金属的资源化回收利用,铜、锌、铝综合回收率分别为78.8%、76.7%、74.3%,处理后液可达到《铜、镍、钴工业污染物排放标准》(GB 25467—2010)的要求。  相似文献   

3.
氧压酸浸炼锌流程中置换渣提取锗镓铟   总被引:3,自引:0,他引:3  
为从锌精矿氧压酸浸炼锌工艺的置换渣中提取锗镓铟元素,对二段浸出-萃取分离锗镓铟铜工艺进行研究,锌电积废液用于一段浸出,H2SO4-HF混酸用于一段浸出渣的二段浸出;一段浸出液分别采用二(2-乙基已基)磷酸(P204),C3~5氧肟酸+二(2-乙基已基)(P204)磷酸及5-壬基水杨醛肟(CP150)分别萃取铟,锗镓及铜;二段浸出液用C3~5氧肟酸萃取提锗,萃余液加入氟化钠沉淀氟硅酸钠。试验结果显示,一段浸出用酸度为3.1 N的湿法炼锌电积废液,液固比4∶1,初始氧分压0.4 MPa,150℃,经3 h的二级浸出后,浸出渣率约为15%,铟镓铜锌4个元素的浸出率都达到98%,而锗浸出率约为80%;一段浸出残渣用H2SO4-HF混酸浸出,其氟/硅摩尔比4.2∶1.0,硫酸浓度为2 N温度80℃,液固比3∶1,浸出时间为5 h,一段浸出残渣中锗几乎完全浸出;一段浸出液在pH 2.0~2.2,30%二(2-乙基已基)磷酸萃取,部分铁与几乎所有的铟被萃取,用2 N盐酸反萃,铟、铁的反萃率分别为98.28%和2.79%,可达到铟铁的分离;萃铟余液用3%的氧肟酸+10%二(2-乙基已基)磷酸-煤油协萃锗、镓,铁也发生共萃,锗、镓和铁的单级萃取率均在90%以上,采用次氯酸钠反萃,锗反萃率近100%,且Ge/Ga和Ge/Fe的反萃分离系数分别为10836和318.7。用3 mol·L-1的硫酸,相比(W/O)1∶2反萃镓,镓的一次反萃率达97.5%。二段浸出液采用10%C3~5氧肟酸-煤油萃取,相比(O/W)为1.2∶1.0,锗的单级萃取率达到98.31%。经30%次氯酸钠溶液反萃,锗的一次反萃率达到98.83%,萃余液加入氟化钠,氟硅化物的沉淀率为90%左右。沉硅滤液经补充氢氟酸后返回二段沉出,锗的浸出仍可达到较完全的浸出。该工艺无废液排放,并且通过与湿法炼锌流程的物料交换而变得简化。  相似文献   

4.
本文提出从含铜锌粉置换渣中回收铜的工艺流程和应用情况,其中含铜锌粉置换渣采用二段逆流加压氧化浸出和一段常规浸出工艺,铜浸出率大于96%,浸出液采用碳酸钠中和,中和后酸度控制在2~8g/L,中和后液经二段过滤进出铜萃取流程,萃取工艺采用3级萃取、2级酸洗和2级反萃,铜萃取率达到99%以上,铜反萃液经纤维改性材料除油,电积采用旋流电积技术生产阴极铜,电积过程控制电流密度550A/m~2,电积周期大于24小时,产出含铜为99.95%的阴极铜,电铜贫液返回铜萃取系统形成闭路循环,整个铜回收工艺高效环保。  相似文献   

5.
某硫精矿综合回收铜钴试验   总被引:1,自引:0,他引:1       下载免费PDF全文
针对某高硫含铜钴硫精矿开展焙烧—酸浸综合回收铜钴试验。研究表明,硫精矿通过掺入焙砂比例约25%,控制入料总硫品位30%左右,铜、钴、锌浸出率分别为88.08%、72.40%和100%。酸浸渣铁品位65.21%。浸出液通过萃取回收铜,萃余液氧化除铁,除铁后液一步沉淀得到富钴渣。  相似文献   

6.
内蒙古某锌冶炼公司采用热酸浸出-低污染黄钾铁矾法炼锌工艺,浸出生产过程中产生大量的铁矾渣和高浸渣,渣中锌含量占到冶炼过程中锌总损失的60%以上。本文采用中和-沉锌法处理浸出两渣,处理过程中的二次滤液的处理是关键。此工艺采用石灰中和pH值4~4. 5,保证大量铁进入渣中,并且滤液中的锌不被沉淀;采用破酸钠控制pH值6~7,保证大部分锌沉淀,加入少量的滤液搅拌返回浸出系统,同时Na~+返回浸出可取代部分碳铵作为沉矾剂使用。工艺现场改造并实践后,两渣中锌含量明显降低,锌漫出回收率从96.44%提高到97.47%,每月可增加收益约170万元。  相似文献   

7.
研究了用中和沉淀法去除刚果(金)某低钴浓度铜萃余液中杂质铁过程。针对该铜萃余液中铁主要以三价离子形态存在的特点,通过对硫酸盐溶液中不同除铁方法的比较,结合刚果(金)当地的能源供应条件,选择中和沉淀法进行低钴浓度铜萃余液除铁处理。通过试验,重点考察中和除铁过程终点pH值、氧化钙调浆浓度、反应温度、反应时间等工艺参数对除铁效果及有价金属铜和钴损失的影响。试验结果表明,在氧化钙调浆浓度20%,终点pH值控制3.5,反应温度40℃,反应时间5h的条件下,铜萃余液中铁的去除率达到97.14%,铜、钴在除铁过程中的损失率分别为1.02%和0.66%。  相似文献   

8.
介绍了在硫酸介质中使用P507+N235双溶剂萃取体系萃取除铁的工艺应用。通过生产实践发现,铁以三价态被萃取,有机相由15%P507+5%N235+80%260#稀释剂组成,相比2∶1,铁萃取率达到98%以上,在反萃剂为250g/L稀硫酸溶液,相比4∶1的条件下反萃,铁反萃率达到98%以上,反萃液经均相渗析膜分离回收酸,渗析残液通过控制pH,可采用铁矾法、中和除铁和砷酸铁等工艺除铁,铁脱除率均可达到90%以上。  相似文献   

9.
介绍了在硫酸介质中使用P507+N235双溶剂萃取体系萃取除铁的工艺应用。通过生产实践发现,铁以三价态被萃取,有机相由15%P507+5%N235+80%260#稀释剂组成,相比2∶1,铁萃取率达到98%以上,在反萃剂为250g/L稀硫酸溶液,相比4∶1的条件下反萃,铁反萃率达到98%以上,反萃液经均相渗析膜分离回收酸,渗析残液通过控制pH,可采用铁矾法、中和除铁和砷酸铁等工艺除铁,铁脱除率均可达到90%以上。  相似文献   

10.
某高砷高铜金精矿含砷高达9.42%,采用加压氧化—氰化工艺处理,铜、金、银浸出率分别为96%~97%、99%、78%,加压氧化过程80%以上的砷固化在氧化渣中。同时开展了铜萃取、萃余液处理、毒性浸出等工艺单元试验,打通整体流程。毒性浸出试验表明,氰化渣、中和渣毒性浸出液中的重金属、砷浓度达标。采用加压氧化工艺处理高砷高铜金精矿是可行的。  相似文献   

11.
制酸烧渣综合回收铜钴实验   总被引:2,自引:1,他引:1  
利用沸腾焙烧得到的硫铁矿制酸烧渣为原料,进行了酸浸、铜萃取、除铁、沉钴、尾渣氰化等综合回收铜钴实验研究。实验结果表明,采用沸腾焙烧—酸浸—萃取—除铁沉钴工艺可得到合格的铁精粉;酸浸铜浸出率为70.08%,钴浸出率为60.07%;铜萃取率93.6%,反萃率93.8%;萃余液除铁率大于99.9%,沉钴率大于98.9%。  相似文献   

12.
针对某低铜高铁料液在萃取过程中存在除铁效果不佳的问题进行了模拟试验和原因分析,考察了萃取段相比V_O/V_A、料液pH、反萃取段相比V_O/V_A和增加洗涤段等工艺条件对铜萃取率和除铁效果的影响。结果表明:采用"一萃一洗一反萃"工艺,在适宜条件下,铜萃取率可达96.15%,负载有机相铁质量浓度降至0.022g/L;采用改进工艺,Mextral 5910H能进一步提高铜萃取率至97.80%,负载有机相铁质量浓度降至0.013g/L,萃取效果更好。  相似文献   

13.
针对紫金山铜矿低质量浓度酸性废水通过漂白粉去除氰化物-石灰中和处理后浓密上清液中总铜质量浓度仍超标的问题,研究了絮凝剂类型、絮凝剂用量、底流回流量、废渣类型、废渣添加量等因素对中和渣浆沉降性能的影响。其研究结果表明:添加紫金山铜矿萃余液中和渣膏体浓密机底流进行辅助沉降,当体系固体质量分数增加到1.5%、絮凝剂AP8120添加量为3 mg/L时,沉降0.5 h后的上清液中总铜质量浓度为0.056 mg/L,出水水质达到《污水综合排放标准》(GB 8978—1996)一级排放标准。  相似文献   

14.
铜再生灰浸出液中含有Cu、Zn、Fe、Cd等多种有价金属。采用“Lix984+磺化煤油”有机相从铜再生灰浸出液中萃取分离铜,并采用中和除铁法对萃余液中的铁沉淀分离。探究了萃取级数、萃取相比O/A、萃取剂浓度、水相初始pH、萃取时间对Cu2+与其它金属离子萃取分离的影响,以及溶液pH、反应温度、反应时间对萃铜余液除铁过程的影响。萃铜试验优化条件为:萃取级数2级、萃取相比3︰4、萃取剂浓度15%、萃取时间2 min、萃取初始水相pH=1.5。除铁试验最佳参数为:中和终点pH=4.0、反应温度40 ℃、陈化时间1 h。在最佳条件下,Cu的萃取率为99.12%,与Zn、Cd、Fe的分离系数分别为1 317.9、1 178.7和651,实现Cu与其它金属的有效分离。萃铜余液除铁率达99.67%,除铁后液满足锌电解液对Fe浓度的要求。  相似文献   

15.
罗小兵 《湿法冶金》2012,(6):366-368
研究了用溶剂萃取法从紫金山铜矿含铜硐坑水中回收铜。所收阴极铜纯度为99.99%,萃余液铜质量浓度低于50mg/L,铜回收率达94%。同时采用絮凝法加快中和渣浆沉降速度,上清液达到国家矿山Ⅰ类水外排标准。该法有利于降低废水治理成本、减小中和渣量,有较好的经济效益和社会效益。  相似文献   

16.
重金属工业废水处理工艺的研究   总被引:5,自引:2,他引:3  
文章研究了重金属工业废水一段石灰中和-二段聚铁沉淀-缓蚀阻垢-净化回用的工艺流程,一段中和pH值控制为9~10,二段中和pH值控制为7~8.5,聚铁加入量为150~250mg/L,缓蚀阻垢剂ZY605加入量为15~30mg/L。该工艺科学合理,处理后废水低于国家排放标准,添加阻垢剂后回用效果接近生产用水且经济效益显著。  相似文献   

17.
采用火法烟化挥发法处理湿法炼锌、火法炼铅渣后产生的氧化锌烟尘主要含锌、铁,还含有铟、锗等一种或多种稀有金属,具有较高的回收价值。常规处理氧化锌烟尘采用两段酸浸工艺处理,通常只能针对其中一种稀有金属进行单一回收,不能满足目前企业的原料变化和冶炼要求。以含铟、锗的氧化锌烟尘为原料,利用铟、锗浸出特性的不同,通过调控反应过程的酸度,分步浸出铟、锗,并通过铟、锗萃取特性的不同,进一步分离回收铟、锗,从而实现氧化锌烟尘中铟、锗的分离提取。结果表明,经三段中浸—低酸浸—高酸浸强化浸出,中浸液中铟含量在2 mg/L左右,锗含量在60 mg/L左右,可用于后续的沉淀回收锗;低酸浸出液的铟含量在280 mg/L左右,锗含量在70 mg/L左右,经过后续的中和沉淀,铟富集到10 075 g/t左右,中和渣进行浸出—萃取—电积得到精铟产品和含锗萃余液,萃余液返回中浸,达到了铟锗分离提取的目的,实现了对资源的综合利用。  相似文献   

18.
陈雄 《云南冶金》2013,(2):104-106
某厂制酸系统污水处理工艺采用石灰一铁盐法,一段中和反应时,由于石灰乳液投加量过大,造成石膏渣量大,石膏渣中重金属含量高。通过调整生产操作控制,调整生产工艺,可以实现降低石膏渣重金属含量的目的。通过对新工艺、新技术的了解和吸收,积极寻找出适合自身实际的污水处理工艺新思路。  相似文献   

19.
开展了两种加压浸出工艺处理锌浸出渣的试验研究。“加压还原浸出+氧压浸出”取代原针铁矿工艺的“三段逆流热酸浸出+还原”,锌焙烧矿到铅渣的渣率为15.74%,锌、铁、铜、铟、镁的浸出率分别为99.32%、93.50%、95.02%、91.03%、99.97%,各项指标均优于原工艺,锌、铟的浸出率分别提高了1.82、11.03个百分点,反应时间由14 h缩短为4 h,液固分离次数由4次减少为2次。“两段逆流加压浸出”取代原黄钾铁矾工艺的“硅浸+预中和+黄钾铁矾沉铁”,锌焙烧矿到二段渣的渣率为35.88%,锌、铁、铜、铟、镁的浸出率分别为98.50%、4.94%、90.48%、2.69%、93.77%,各项指标均优于原工艺,浸出后液(相当于水解除铁后液)可以直接返回中性浸出工序,反应时间由16 h缩短为4 h,液固分离次数由3次减少为2次。加压浸出采用密闭的加压釜,更容易实现整个炼锌系统蒸汽平衡,无需额外增加蒸汽锅炉。  相似文献   

20.
采用碱浸—沉淀法回收锌,酸浸—置换法回收铜及酸浸—沉淀法回收锰使烟道灰中的铜、锌、锰得到分离回收。通过正交实验得到最优化工艺。碱浸法最优化工艺:固液比为1∶4,NaOH浓度为10%,反应温度为65℃,反应时间2 h,锌浸出率达到97.6%,所得ZnCO_3渣含锌量达50.0%,回收率达96.0%;酸浸法最优化工艺:固液比为1∶5,硫酸浓度为7.5%,反应温度为60℃,反应时间2 h,其铜、锰浸出率分别达到96.0%,95.0%;铁置换法最优化工艺:初始pH值为2.0,铁过量系数为1.15,反应温度为65℃,反应时间2 h,铜回收率达98.0%,铜含量达90.5%以上;利用沉淀法回收锰得MnO_2,锰回收率达99.0%以上,锰含量达55.0%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号