首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过正交实验的方法,以地聚合物稠度、凝结时间、胶砂强度为研究依据,以偏高岭土、矿渣、磷渣、碱激发剂用量为研究对象,每个因素取3个水平,分析4个因素在各自水平上对地聚合物性能的影响。试验结果表明,偏高岭土用量是地聚合物稠度的最主要影响因素;偏高岭土和碱激发剂用量是初凝时间的主要影响因素,磷渣和偏高岭土用量是终凝时间的主要影响因素;偏高岭土用量是3 d 抗压强度的主要影响因素,矿渣用量是28 d 抗压强度的主要影响因素。按30%偏高岭土-40%矿渣-30%磷渣-10%碱激发剂制备的地聚合物具有良好的抗碳化性能,但收缩率较普通硅酸盐水泥高。  相似文献   

2.
李盾兴  陈小平  张业  谢鲜梅 《当代化工》2017,(11):2181-2184
以高炉矿渣、偏高岭土、水玻璃和氢氧化钠为主要原料,制备矿粉-偏高岭土体系地聚合物。通过调节矿粉掺量(0%~50%范围内),研究钙组分含量对地聚合物抗压强度、凝结时间、物相组成和微观结构的影响。结果表明:当矿粉掺量为30%时,地聚合物样品310 min初凝,395 min终凝,1、3、7和28 d抗压强度分别达到52.8、73.9、87.1和102.3 MPa,达到快凝、早强和高强的目的。  相似文献   

3.
采用磷渣以20%、40%和60%的比例取代水泥制备磷渣-水泥复合胶凝体系(PSC-X)以及用浓度分别为6 mol/L、8 mol/L、10 mol/L和12 mol/L的NaOH溶液制备碱激发磷渣胶凝体系(PSA-X).测试了两种体系的标准稠度用水(NaOH溶液)量、凝结时间、胶砂抗折强度和抗压强度,并结合XRD、TG-DSC和SEM-EDS等技术手段对其进行了物相组成及微观形貌的分析观测.研究结果发现:磷渣的掺入使PSC-X体系的标准稠度用水量降低了13.6%左右.而凝结时间却明显延长.增加NaOH溶液的浓度,PSA-X体系的标准稠度用液量也随之增加,且均高于PSC-X体系.凝结时间则较PSC-X体系明显缩短.适量掺入磷渣,能明显提高水泥胶砂试件的抗压强度;PSA-X体系的抗压强度发展良好,其强度值随激发剂浓度提高而呈下降趋势.PSC-X体系主要有Ca(OH)2、C-S-H凝胶、AFt和C4AHx等水化产物,而PSA-X体系则是Ⅰ型C-S-H凝胶,还有一定量的方沸石存在.  相似文献   

4.
本文研究了经混合碱激发活性的磷渣,以不同比例取代水泥制得碱激发矿渣水泥浆体的凝结性能和抗压强度,并用扫描电子显微镜观察其硬化浆体的微观结构。研究表明:随着碱活性磷渣掺量的增加,浆体的凝结时间延长,各龄期抗压强度均下降,其中早期强度降低幅度较大,后期强度降低不明显。当碱活性磷渣掺量为30%时,浆体28d强度和纯水泥浆体的最接近。碱活性磷渣的掺入能有效地改善硬化浆体水化后期的微观结构,主要起到活化作用。  相似文献   

5.
研究了电石渣掺量,磷渣与电石渣的不同混合粉磨方式以及改性后磷渣掺量对硅酸盐水泥凝结时间和强度的影响.结果表明:改性磷渣等量取代水泥后,凝结时间随磷渣掺量的增加而增加;在相同磷渣掺量下,凝结时间随电石 ,渣掺量增加而减小.对于改性磷渣不同的混合粉磨方式,分别粉磨后在水中浸泡12h后效果最好,当磷渣掺量为30%,电石渣掺量为磷渣的40%时,初凝时间为143min,终凝为232min,略低于纯水泥的凝结时间.  相似文献   

6.
在磷渣掺量对磷渣水泥性能影响研究的基础上,分别研究了三乙醇胺、乙二醇、甘油对磷渣水泥粉磨效果的影响,CN、铝氧熟料、煅烧明矾石对凝结时间的影响,硫酸钠、偏硅酸钠对强度的影响,并对上述外加剂的协同作用进行了研究。结果表明:外加剂可很好地解决磷渣水泥早期强度低、凝结时间长的问题,在复合外加剂作用下磷渣掺量为40%的磷渣水泥能达到42.5强度等级水泥的要求。  相似文献   

7.
首先通过改变粉煤灰微珠掺量,确定满足快速修补要求的矿渣-粉煤灰微珠胶凝材料基体的最佳配比,再调节偏高岭土、硅灰掺量,研究其对复合胶凝材料凝结时间、力学性能和水化机理的影响。研究发现,偏高岭土对凝结时间的改变较硅灰更敏感。通过化学结合水测试,分析了不同硅灰和偏高岭土掺量对矿渣-粉煤灰微珠胶凝材料水化反应程度影响的原因。力学实验结果表明:矿渣-粉煤灰微珠胶凝基体复合掺加5%硅灰(质量分数)+15%偏高岭土(质量分数),试块2 h抗压强度为11.5 MPa、28 d抗压强度达到75.2 MPa,且呈现缓慢递增的趋势。  相似文献   

8.
在偏高岭土-矿渣基地聚合物中加入纤维改善地聚合物的韧性。用不同龄期样品的抗冲击功、抗折强度、样品受压过程分析和受压样品外貌及断口形貌显微分析等表征纤维对地聚合物的增韧效果。结果表明:BF型化纤可显著提高偏高岭土-矿渣基地聚合物的韧性。80℃养护条件下,BF型化纤掺量为0.7%时,样品3 d和28 d的抗冲击功较同龄期净浆提高了136.38%和188.62%,抗折强度提高了40.30%和37.33%;样品28 d的极限载荷较净浆提高了30.21%,受压破坏时的形变量增加了18.06%,且样品受压破坏的断裂功明显大于净浆的断裂功,极限载荷与失效载荷比值为1.60(净浆为1.13);BF型化纤穿插于硬化体结构内部,具有桥联搭接作用。  相似文献   

9.
采用水玻璃作为激发剂,采用偏高岭土和矿渣作为固体前驱体,研究了不同水玻璃模数、不同碱当量和不同偏高岭土掺量对碱偏高岭土矿渣地聚合物水泥砂浆流动度、凝结时间、强度和粘度特性的影响,并基于牛顿内摩擦定律,推导了砂浆剪切应力与剪切速率的相关关系.结果 表明:碱偏高岭土矿渣水泥砂浆流动度和强度均随水玻璃模数和偏高岭土掺量增大而降低.凝结时间随偏高岭土掺量的增大而增加,随水玻璃模数增大逐渐增大.经过推导,发现碱偏高岭土矿渣水泥砂浆剪切应力与剪切速率呈线性关系.关系式中的屈服应力和塑性粘度均随偏高岭土掺量和水玻璃模数增大而增大.  相似文献   

10.
水热条件下偏高岭土-粉煤灰地聚合物性能研究   总被引:2,自引:0,他引:2  
通过抗压强度测试和MIP、XRD、SEM分析等方法,研究了偏高岭土与粉煤灰配比对地聚合物性能的影响.结果表明:粉煤灰掺量的增大有利于地聚合物抗压强度的提高,50℃养护3d和7d时,粉煤灰地聚合物抗压强度较偏高岭土地聚合物分别提高了64.7%和116.0%.MIP和SEM分析表明,粉煤灰掺量的增大可有效提高地聚合物的结构致密性,XRD分析表明,粉煤灰掺入偏高岭土中,经碱激发作用在25°~35°间形成了无定型粉煤灰地聚合物的弥散衍射峰,有利于偏高岭土-粉煤灰地聚合物性能的提高.  相似文献   

11.
磷渣对硅酸盐水泥凝结时间的影响及机理   总被引:2,自引:0,他引:2  
重点研究了磷渣对硅酸盐水泥凝结时间的影响,以及几种常用外加剂硫酸钠、烧石膏和烧明矾石对磷渣水泥凝结时间的改善,并研究了一种以硫铝酸钙为主要矿物组成的合成外加剂的作用。结果表明磷渣的掺量与比表面积对磷渣硅酸盐水泥的缓凝作用非常大,硫酸钠和合成外加剂对磷渣的缓凝的改善效果最佳,烧石膏与烧明矾石的作用不显著。通过对磷渣的缓凝机理的研究,指出了磷渣中的PO43-溶出对水泥的缓凝作用。  相似文献   

12.
以偏高岭土、水玻璃和氢氧化钠为主要原料制备地聚合物,研究了氧化物组分摩尔比(n(SiO_2)/n(Al_2O_3)、n(Na2O)/n(Al_2O_3)和n(H2O)/n(Al_2O_3))对偏高岭土基地聚合物抗压强度的影响,采用X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)对地聚合物的结构和组成进行了分析。结果表明,三种摩尔比在一定范围内均存在最佳值,在最佳配比下制得的地聚合物样品3,7,28 d抗压强度分别为62.6,69.4,77.2 MPa。在地聚合反应中,主要形成无定形凝胶结构,当n(SiO_2)/n(Al_2O_3)<3.6和n(Na2O)/n(Al_2O_3)<0.8时,产生结晶度良好的沸石晶体。  相似文献   

13.
以偏高岭土、水玻璃和氢氧化钠为主要原料制备地聚合物,研究了氧化物组分摩尔比(n(SiO_2)/n(Al_2O_3)、n(Na2O)/n(Al_2O_3)和n(H2O)/n(Al_2O_3))对偏高岭土基地聚合物抗压强度的影响,采用X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)对地聚合物的结构和组成进行了分析。结果表明,三种摩尔比在一定范围内均存在最佳值,在最佳配比下制得的地聚合物样品3,7,28 d抗压强度分别为62.6,69.4,77.2 MPa。在地聚合反应中,主要形成无定形凝胶结构,当n(SiO_2)/n(Al_2O_3)3.6和n(Na2O)/n(Al_2O_3)0.8时,产生结晶度良好的沸石晶体。  相似文献   

14.
磷渣对硅酸盐水泥的缓凝机理   总被引:18,自引:0,他引:18  
在对已有的磷渣缓凝机理进行分析的基础上,通过实验对他们的论点进行了质疑,提出了吸附机理,即在硅酸盐水泥水化初期形成的半透水性水化产物薄膜对磷渣颗粒的吸附,导致这层薄膜致密性增加,从而导致离子和水通过薄膜的速率下降,引起水化速度降低,最终导致缓凝,并运用这个观点分析了磷渣比表面积与P,F含量不同对凝结时间的影响机理.  相似文献   

15.
矿渣作为一种工业固废因其优异的火山灰活性得到了广泛的应用,而磷渣作为黄磷工业的固废由于磷的缓凝作用,其利用率依旧较低.以矿渣与磷渣为主要胶凝材料,电石渣为碱激发材料,展开磷渣-矿渣-水泥三元体系胶凝材料的性能研究.结果表明:电石渣的激发效果随磷渣/矿渣质量比的增大而愈加显著;随磷渣/矿渣比例降低,激发体系的早期强度呈增大趋势,而后期强度呈减小趋势;磷渣与矿渣质量比为60:30时,电石渣激发后材料体系可兼顾早期与后期力学性能.  相似文献   

16.
以多种磷渣样品为研究对象,协同多家试验单位共同探讨了水泥强度检验方法采用ISO法后,磷渣水泥的物理性能及其改善途径。研究发现,磷渣掺量由20%增至60%时,水泥抗折和抗压强度均大幅下降,凝结时间随磷渣掺量增加而显著延长。磷渣与矿渣等混合材复掺,可在一定程度上改善水泥性能;而通过提高水泥细度以及在磷渣中掺入少量钙质和硅铝质材料,可明显提高磷渣水泥强度(约10MPa),大大缩短凝结时间(约4h),改善磷渣水泥物理性能。  相似文献   

17.
研究了磷渣与石灰石复合比例和复合掺合料取代粉煤灰的质量比对C30和C50机制砂混凝土工作性能和抗压强度的影响。结果表明:磷渣与石灰石复合取代粉煤灰可改善机制砂混凝土的工作性能,降低混凝土坍落度经时损失;复合掺合料部分或完全取代粉煤灰,不同强度等级机制砂混凝土早期抗压强度均与基准混凝土相当,甚至略高于基准混凝土;取代50%粉煤灰,且复合掺合料中磷渣掺量为60%,各强度等级的复合掺合料混凝土后期抗压强度均高于基准混凝土,但随粉煤灰取代量增大,复合粉中石灰石粉掺量增加,机制砂混凝土的抗压强度呈降低趋势。  相似文献   

18.
赵前  吴优 《水泥》2013,(1):7
研究了在磷渣硅酸盐水泥中掺加少量的钢渣对该水泥性能的影响。结果表明,添加不超过6%的钢渣后,磷渣水泥的抗压强度降低约10%,而水泥初凝时间和终凝时间分别减少了117min和62min以上;当采用钢渣、磷渣加小于3%水共同混合和混磨两种处理方式,水泥初凝时间和终凝时间可继续缩短95min和150min以上,并以混磨方式缩短凝结时间更明显,初凝时间和终凝时间最多分别缩短186min和209min。同时采用陈化处理,可大幅提高该水泥的早期强度,并随陈化时间的延长而增加,而水泥凝结时间则较未陈化时约增加20~40min。  相似文献   

19.
潘荣祥  杨敏  袁宏 《硅酸盐通报》2023,(9):3212-3220
针对地质聚合物需水量大、黏度高的问题,研究了木质素磺酸钠(SL)、聚羧酸减水剂(PC)、萘系减水剂(N)、三聚氰胺系减水剂(M)对赤泥-粉煤灰基地质聚合物性能的影响。通过FTIR、XRD、SEM-EDS分析了减水剂在碱溶液中的稳定性及其对赤泥-粉煤灰基地质聚合物物相、形貌和结构等的影响。结果表明,在相同液固比情况下,四种减水剂均可提高浆体流动度,流动度提高幅度从大到小依次是N、M、SL、PC。掺量不高于原料质量的0.50%时,SL与N对抗压强度有改善作用,对抗压强度的影响由优到劣依次是N、SL、M、PC。减水剂的掺入不会改变地质聚合物的物相组成,SL与N在碱溶液中相对稳定,但是PC与M在碱溶液中的稳定性较差。SL、PC、N、M的最佳掺量分别为0.50%、0.75%、0.50%、0.50%(质量分数)。  相似文献   

20.
研究了不同掺量下磷渣粉对C30、C60强度等级机制砂混凝土的工作性与力学性能影响,并与同掺量的粉煤灰机制砂混凝土进行了比较。研究表明,磷渣粉具有一定的减水作用,能有效改善机制砂混凝土的工作性能,对高强度等级机制砂混凝土更为明显。掺入磷渣粉后,不同强度等级机制砂混凝土早期抗压强度均较基准混凝土低,且随着掺量增大,强度下降明显。各掺量下C30磷渣粉机制砂混凝土后期强度均较基准混凝土高,而C60混凝土后期强度与掺量有关。与同掺量粉煤灰混凝土相比,磷渣粉机制砂混凝土初始坍落度及各龄期抗压强度均较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号