首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 93 毫秒
1.
模块装药快速烤燃特性的数值预测   总被引:1,自引:1,他引:0  
刘静  余永刚 《含能材料》2019,27(5):371-376
为了研究模块装药的热安全性,基于可燃药盒材料和单基药的化学反应机理,建立了模块装药的二维非稳态烤燃模型。在外界升温速率为1~10 K·min~(-1)下,分析了模块装药的快速烤燃响应特性。结果表明,模块装药最初的着火位置均是在靠近可燃药盒内壁面左右两侧的单基药中,点火区为两个环形响应区。随着升温速率的提高,环形响应区将从单基药内向药盒内壁面方向移动,但外界升温速率的变化对模块装药点火位置的影响较小。在1,6,10 K·min~(-1)升温速率下,单基药发生烤燃响应的点火温度分别为458.2,453.9 K和455.7 K,与文献中实验所测得的点火温度(443~463 K)基本吻合。外界升温速率的变化对模块装药发生烤燃响应的点火温度影响较小,但随着升温速率的提高,模块装药发生烤燃响应的点火时间呈指数型衰减。  相似文献   

2.
叶青  余永刚 《兵工学报》2020,41(10):1970-1978
为研究星型装药的固体火箭发动机的热安全性问题,针对装填高氯酸铵/端羟基聚丁二烯(AP/HTPB)推进剂的火箭发动机开展烤燃数值研究。采用两步总包反应描述AP/HTPB的烤燃过程,建立三维烤燃模型对快速、中速和慢速加热速率下火箭发动机的烤燃行为进行数值预测。结果表明:升温速率对着火温度和着火延迟期有一定影响,对着火区域的中心位置、形状和大小有较大影响:在升温速率0.55~1.45 K/s快速烤燃工况下,着火位置紧邻推进剂右侧端面;在升温速率0.005~0.011 K/s中速烤燃工况下,着火区域均呈不连续点状圆环分布,着火点位于翼槽中线上;在升温速率2.4~3.3 K/h慢速烤燃工况下,着火点以翼槽中线呈对称两点分布;随着升温速率升高,着火位置向推进剂右侧端面移动;着火温度Ti与升温速率k呈二次函数关系,即Ti= 516.659 36- 1.267 8k+7.479 4k2.  相似文献   

3.
为了研究热载荷作用下高氯酸铵(AP)/端羟基聚丁二烯(HTPB)推进剂的热安全性,针对某固体火箭发动机建立了二维烤燃简化模型。其中,AP/HTPB推进剂的慢烤燃过程采用两步总包反应描述。理论计算结果与实验数据吻合较好。在此基础上,分别对该发动机在升温速率为1.8,3.6,7.2 K·h-1下的慢速烤燃行为进行了数值预测。结果表明,三种升温速率下,AP/HTPB推进剂的最初着火位置均发生在药柱内壁纵向1 mm肉厚的环形区域内,且随着升温速率的增大,最初着火位置由中心区向药柱壳体端面移动。升温速率从1.8 K·h-1增加到7.2 K·h-1时,着火温度从592 K升到595 K,变化不大,但是着火延迟期却从31.48 h缩短到14.87 h。  相似文献   

4.
为了获得固体火箭发动机的推进剂内孔形状对烤燃特性的影响,针对装填高氯酸铵/端羟基聚丁二烯(AP/HTPB)的圆形孔、星孔装药的固体火箭发动机,在基于Arrhenius定律的基础上,分别建立了对应的固体火箭发动机二维、三维非稳态烤燃模型。对上述两种装药结构的固体火箭发动机烤燃过程进行了数值模拟,分析了以上两种内孔形状对推进剂烤燃特性的影响。结果表明:固体推进剂的内孔形状在不同热载荷条件下的烤燃响应特性不同。快速烤燃条件下,内孔形状对固体火箭发动机的烤燃响应特征参数影响较小;在慢速烤燃条件下,推进剂内孔形状对推进剂着火延迟时间影响有限,对着火温度和着火位置则有显著影响。采用圆形孔装药时发生烤燃响应的着火温度较高,而采用星形孔装药时则较低;圆形孔装药时着火位置在推进剂头部内孔壁面附近,且随升温速率增大着火位置逐渐向端面移动,而星形孔装药时着火位置则位于推进剂中部的内孔壁面附近,且随升温速率的增大着火位置会出现跳跃性变化。  相似文献   

5.
钱环宇  余永刚  刘静 《兵工学报》2020,41(2):254-261
为分析模块装药在火炮连发射击直至内膛温度达到可能发生烤燃响应的温度值后留膛热安全性,建立了火炮膛内模块装药二维非稳态烤燃模型。采用计算流体力学Fluent软件,对装填单基药的可燃模块进行了烤燃模拟。数值分析了50 ℃、20 ℃、0 ℃、-20 ℃和-40 ℃ 5种环境温度下,火炮以1发/min持续射击一定发数后装填入膛的模块装药在留膛期间的烤燃特性。结果表明:射击环境温度越低,连发射击后膛内模块装药的烤燃响应时间越长;5种温度对应的烤燃响应时间分别为136.0 s、176.4 s、205.7 s、237.4 s和278.5 s;每种射击环境温度下均是靠近模块盒右侧端面处的单基药最先着火,并形成环形烤燃响应区;不同射击环境温度下单基药的烤燃响应温度范围为454.2~462.6 K.  相似文献   

6.
针对引信内部装药对引信不敏感性影响不清晰的问题,通过有限元分析不同装药下引信在烤燃条件下的响应过程和规律。采用ABAQUS软件仿真,应用炸药多步热分解反应数学模型模拟炸药热分解过程,研究了快速烤燃与慢速烤燃两种情况下,装药中钝感剂的比例以及装药种类对引信不敏感性的影响。研究结果表明,钝感剂的比例从2.5%上升到15%,点火温度、壳体温度和点火时间的变化都在0.4%以内,几乎没有影响。当使用TATB作为传爆药时,相较于原引信的钝化黑索今,慢速烤燃试验条件下点火温度和壳体温度提升了80 K左右,点火时间延长了55.4%,快速烤燃试验条件下,点火温度和壳体温度提升了超过100 K,点火时间延长了50.3%,显著提高了引信的热安全性。同时当升温速率由3.3 K/h提升至0.05 K/s时,点火位置由导爆药处变为传爆药柱顶部。慢速烤燃和快速烤燃试验条件下,均无需考虑钝感剂/粘合剂的占比影响。换用更为钝感的炸药时,为了适应点火位置的变化,也可能要对引信结构进行改进。  相似文献   

7.
底排药快速烤燃特性的数值模拟   总被引:1,自引:1,他引:0  
李文凤  余永刚  叶锐 《含能材料》2016,24(10):941-946
为了研究底部排气弹的热安全性,基于高氯酸铵(AP)/端羟基聚丁二烯(HTPB)底排药两步化学反应机理,建立了底排装置的二维非稳态烤燃模型。在外界加热速率为1,5,10 K·min~(-1)条件下,分析了底排装置的快速烤燃响应特性。结果表明,在上述加热速率下,底排药最先着火位置均靠近底排药外侧壁面附近。外界加热速率的变化对底排药着火位置的影响略小。随着加热速率的提高,底排药发生烤燃响应的着火时间呈指数型衰减。在1,5,10 K·min~(-1)加热速率下,AP/HTPB底排药发生烤燃响应的温度分别为579.4,574.0 K和573.5 K,加热速率对底排药的着火温度影响较小。  相似文献   

8.
李文凤  余永刚  叶锐 《兵工学报》2017,38(8):1532-1540
为研究装药尺寸对高氯酸铵(AP)/端羟基聚丁二烯(HTPB)底排药烤燃响应特性的影响,基于AP/HTPB两步分解反应机理,建立底排药柱烤燃计算模型。分别选取装药长度为72 mm 和内孔直径为 43 ~53 mm、内孔直径为43 mm和装药长度为72~90 mm的圆环柱状底排药,在1.0~ 10.0 K/min加热速率下对某底排装置的烤燃特性进行数值模拟。结果表明:在相同加热速率和装药长度条件下,随着装药内孔直径的增大,底排药的烤燃响应时间缩短;当装药内孔直径不变,装药长度增加至90 mm,底排药的烤燃响应时间明显缩短;装药尺寸的变化对底排药的烤燃响应位置的影响较小;在1.0~2.5 K/min中速烤燃条件下,随着内孔直径和装药长度分别增大,底排药的烤燃响应温度逐渐增大;在5.0~10.0 K/min快速烤燃条件下,装药尺寸的变化对底排药的烤燃响应温度的影响较小。  相似文献   

9.
不同升温速率下炸药烤燃模拟计算分析   总被引:3,自引:5,他引:3  
王沛  陈朗  冯长根 《含能材料》2009,17(1):46-49
为了研究不同升温速率条件下炸药热反应规律,建立了炸药烤燃模型,利用计算流体力学软件,对固黑铝炸药(GHL)在不同升温速率下的烤燃过程进行了数值模拟计算.采用Arrhenius定律描述炸药自热反应,根据在1 K·min-1升温速率下固黑铝炸药烤燃实验测量的温度-时间曲线,确定了固黑铝炸药的活化能和指前因子分别为180.2 kJ·mol-1和2.1674 s-1; 分别对3.3 K·h-1,1 K·min-1,3 K·min-1和10 K·min-1四种不同升温速率下固黑铝炸药烤燃过程进行了数值模拟计算分析.结果表明,升温速率对炸药点火时间和点火位置有很大影响.升温速率增大,炸药点火时间缩短,点火位置从炸药内部移向炸药边缘.升温速率对炸药点火温度影响很小,但慢速烤燃下炸药点火时的环境温度比快速烤燃低.  相似文献   

10.
针对弹药在制造、存储、运输及实战等环境中遭受意外热刺激的问题,对不同升温速率下引信烤燃的热响应规律进行了研究。以1,1-二氨基-2,2-二硝基乙烯(FOX-7)装药引信为研究对象,建立了考虑引信各部件热膨胀作用的烤燃计算模型,采用ANSYS Workbench软件对0.5 K/min,1 K/min,2 K/min,3 K/min,4 K/min,5 K/min和6 K/min七种不同升温速率下引信烤燃的热传导和热膨胀过程进行热力耦合计算,得到了引信的点火位置、点火时间、点火温度、形变量以及等效应力。仿真计算结果表明:随着升温速率的增加,点火位置由传爆药柱中心向传爆药边缘位置移动,最终出现在导爆药柱中;点火时间缩短,而变形量先增大后减小;传爆序列的最大等效应力均位于传爆药柱中;升温速率对点火温度的影响较小。  相似文献   

11.
小型传爆装置慢燃实验及数值计算   总被引:2,自引:1,他引:1  
为了研究引信传爆管在烤燃作用下的热响应规律,设计了聚黑-14C(JH-14C)的小尺寸传爆管慢烤实验。对JH-14C进行差示扫描分析得到其热分解动力学参数,并结合引信传爆管的烤燃实验和数值模拟结果,确定了JH-14C的活化能与指前因子分别为2.04×105 J/mol、5.59× 1017 s-1. 通过对4种不同升温速率下引信传爆管的烤燃过程进行数值计算,结果表明:烤燃装置点火时,传爆药柱先起爆,冲击波经管壳衰减后使导爆药柱发生爆炸;不同升温速率下,传爆药柱内部形成的点火位置不同;随着升温速率的增加,点火位置由传爆药柱中心向其边缘转移,但点火温度变化不大。  相似文献   

12.
为考核全尺寸侵彻弹体的慢速烤燃响应特性,利用自行研制的慢速烤燃装置开展了实验。将质量为290 kg的侵彻弹体平放在慢烤箱中以3.3 ℃/h的升温速率缓慢加热,实时采集弹体表面温度曲线并拍摄整个实验过程,测量距弹体质心水平7 m处的反射冲击波峰值超压。实验结果表明:全尺寸侵彻弹体在加热42 h45 min23 s、温度达到约190 ℃时发生燃烧,41 s后发生了更为剧烈的反应,弹体和慢烤箱被炸裂成大块破片;通过反射冲击波超压峰值反推弹体剧烈反应时对应的等效裸露装药当量为4.153 kg,远小于实际装药当量和完全爆轰时的等效裸露装药当量;从加热时间、弹体表面温度、实验现场破坏情况、反射冲击波峰值超压、反应机理等方面综合判断该侵彻弹体的慢速烤燃响应类型为燃烧转爆炸。  相似文献   

13.
不同火焰环境下固体火箭发动机烤燃特性数值模拟   总被引:2,自引:0,他引:2  
杨后文  余永刚  叶锐 《兵工学报》2015,36(9):1640-1646
为了研究固体火箭发动机意外遇到火焰环境时的热安全性问题,以高氯酸铵/端羟基聚丁二烯(AP/HTPB)复合固体推进剂为装填对象,针对某种小型固体火箭发动机建立了二维烤燃简化模型。分别对800 K、1 000 K、 1 200 K火焰环境下固体火箭发动机的烤燃特性进行了数值模拟。计算结果表明,3种火焰环境下,AP/HTPB最初着火位置均发生在靠近喷管的药柱外壁一环形区域内;随着火焰温度的提高,着火延迟期快速缩短,着火温度逐渐增大;绝热层的绝热作用随着火焰温度的增大而增强;复合固体推进剂中AP首先发生缓慢分解时的温度随火焰温度的提高而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号