首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The depercolation threshold of porosity is an important parameter to assess the permeability of cement-based materials. The depercolation threshold is usually defined as the porosity whereby the volume fraction of connected pores in the cement paste decreases to zero. In this paper, the depercolation threshold is defined and determined with respect to the morphological development of pore space during hydration. The morphology of solid phase and pore structure is studied on model cement simulated by the SPACE system, using stereological theory. The influences of particle size distribution and water to cement ratio (w/c) on the depercolation threshold of porosity are discussed. It is found that particle size distribution of cement has significant influence on the depercolation threshold of porosity. The depercolation threshold is higher for finer cement system. However, the influence of w/c on the depercolation threshold of porosity is negligible. For a model cement of moderate fineness, depercolation is not possible at a relatively high w/c (say, 0.6), because the porosity of cement paste remains above the depercolation threshold even at complete hydration.  相似文献   

2.
The alkalinity of the pore liquid in hardened cement paste or concrete is important for the long-term evaluation of alkali-silica reaction (ASR) expansion and corrosion prevention of steel bar in steel reinforced structures among others. It influences the reactivity of supplementary cementitious materials as well. This paper focuses on the alkali binding in hydrated slag cement paste and a method for predicting the alkali concentrations in the pore solution is developed. The hydration of slag cement is simulated with a computer-based model CEMHYD3D. The amount of alkalis released by the cement hydration, quantities of hydration products, and volume of the pore solution are calculated from the model outputs. A large set of experimental results reported in different literatures are used to derive the alkali-binding capacities of the hydration products and practical models are proposed based on the computation results. It was found that the hydrotalcite-like phase is a major binder of alkalis in hydrated slag cement paste, and the C?CS?CH has weaker alkali-binding capacity than the C?CS?CH in hydrated Portland cement paste. The method for predicting the alkali concentrations in the pore solution of hydrated slag cement paste is used to investigate the effects of different factors on the alkalinity of pore solution in hydrated slag cement paste.  相似文献   

3.
This paper presents a numerical model for the simulation of the hydration process and the development of the microstructure on Self-compacting cement paste (SCC) containing limestone powder as filler. Based on a series of experimental results, e.g. thermometric isothermal conduction calorimetry tests, environmental scanning electron microscopy (ESEM) image analysis, thermogravimetric analysis (TGA) and the derivative thermogravimetric analysis (DTG) measurements, the hydration process, the solid phase distribution, total porosity and pore size distribution have been determined at different hydration stages. Based on the hydration chemistry, the stoichiometry and the hydration kinetics of cement with limestone, an analytical hydration model and a microstructural model of self-compacting cement paste are proposed. Two SCC mixtures with w/c 0.41 and w/c 0.48, both with water/powder ratio (w/p) 0.27, were simulated and compared to a traditional cement paste (TC) with w/c 0.48. The simulation results were discussed and validated against experimental measurements.  相似文献   

4.
Microstructure development of hydrating cement paste at early ages is not only an indicator of the reactivity of cement, but also a factor on the workability of fresh concrete. In this study, the microstructure development of hydrating cement paste at early ages is investigated with non-destructive methods including ultrasound P-wave propagation velocity measurement and non-contact electric resistivity tests, together with conventional needle penetration depth and calorimetry tests. The hydration process and microstructural development of the cement paste is modeled with the three-dimensional computer model CEMHYD3D. Evolution of microstructural parameters including the volumetric fraction of phases and their percolation status are analyzed by using the results of the numerical simulation. Microstructural mechanisms of the two non-destructive techniques (ultrasound pulse propagation and electric resistivity measurements) are discussed. The main findings of this study are that the velocity of ultrasound P-wave propagation in hydrating cement paste is a function of the propagation routes in the material and inter-particle forces. The electric resistivity is controlled by the ionic concentrations in the pore solution during the early hours and later by the connectivity of pores. A model for the development of ultrasound P-wave propagation velocity is also proposed.  相似文献   

5.
CEMHYD3D is an advanced, three-dimensional computer model for simulating the hydration processes of cement, in which the microstructure of the hydrating cement paste is represented by digitized particles in a cubic domain. However, the system resolution (which is determined by the voxel size) has a prominent influence on the simulation results and, thus, is difficult to choose a priori. In this paper, it is shown that the effects of system resolution on the simulation results are mainly due to the lack of considerations of the diffusion-controlled reactions in the model. A new concept “hydration layer” is proposed for mitigating the effects of system resolution on the model predictions. By performing simulations with different system resolutions, the robustness of the improved model is demonstrated. Comparisons of model predictions with experimental measurements further demonstrate that the use of hydration layer can successfully mitigate the bias brought by the system resolution.  相似文献   

6.
进行了0.3和0.5两种水灰比的水泥净浆从1~40天龄期的CT扫描试验,成功重构了水泥净浆尺度上的三维微观模型,观测了未水化水泥颗粒、水化产物和孔隙在这期间的形态变化。基于CT扫描的结果量化未水化水泥颗粒体积含量,进行了水化程度的计算。计算结果与常用的TGA方法进行比较,发现可比性好, CT扫描为一项较可靠的量化水泥水化程度的方法,但需要高精度的CT扫描设备。  相似文献   

7.
The dielectric constant and electrical conductivity of ordinary Portland cement (OPC) with water-cement ratios (w/c) of 0.30, 0.35 and 0.40 were measured for the first 30 h hydration, using a microwave technique in the frequency range 8.2–12.4 GHz. It was found that both the dielectric constant and electrical conductivity of the cement paste are sensitive to the water-cement ratio, the higher the w/c value, the greater the dielectric constant and electrical conductivity, and the longer the hydration time. We also found that the higher the frequency the greater the electrical conductivity but the smaller the dielectric constant. The dielectric constant and electrical conductivity of high- and low-slag cement with water-solid ratio (w/s) of 0.40 were measured in the first 30 h after mixing. The changes in dielectric constant and electrical conductivity of low-slag cement with time are similar to that of OPC, but the high-slag cement shows very different dielectric and electrical properties compared with OPC and low-slag cement. The relationship between the dielectric and electrical properties of cement paste and cement hydration was also discussed.  相似文献   

8.
Quick and nondestructive determination of cure-state and water-to-cement (w/c) ratio in fresh Portland cement-based materials is an important issue in the construction industry since the compressive strength of these materials is significantly influenced by w/c ratio. In this paper, the results of a study demonstrating the potential for early determination of cure-state and w/c ratio of Portland cement-based materials, using a near-field microwave inspection technique, are presented. This technique utilizes the reflection properties of an open-ended rectangular waveguide probe radiating into Portland cement-based materials at 5 GHz (G-band) and 10 GHz (X-band). The results demonstrate the ability of near-field microwave sensing techniques to determine the state of hydration of cement paste and concrete with 0.50 and 0.60 w/c ratios and varying aggregate contents. An empirical formula relating the magnitude of reflection coefficient to the curing time is presented. Using this empirical relationship, the w/c ratio of cement paste and concrete can be unambiguously determined when daily monitoring of the reflection properties of the specimens is performed. The potential for utilizing this technique for on-site monitoring of cure-state and w/c ratio (and compressive strength) determination is also discussed  相似文献   

9.
A newly developed version of a three-dimensional computer model for simulating the hydration and microstructure development of slag cement pastes is presented in this study. It is based on a 3-D computer model for Portland cement hydration (CEMHYD3D) which was originally developed at NIST, taken over in the authors’ group and further developed. Features like the digitized 3-D microstructure, the cellular automata (CA) algorithm for simulating the random walking, phase transformation for simulating the chemical reactions, are retained. But, the 3-D microstructure was reconstructed allowing for slag particles as binder in the system. Algorithms and rules are developed to account for the interaction between Portland cement hydration and slag reaction in the paste, of which the mechanisms were revealed in the studies by Chen and Brouwers [(2007) J Mater Sci 42(2):428; (2007) J Mater Sci 42(2):444] Methods for considering the various factors on the reactivity of slag in hydrating slag cement pastes are proposed, mainly for the oxide composition of slag and the alkalinity in the pore solution composition. A comparison between the model predictions and the experimental results in literature shows that the presented computer model can successfully predict the hydration process and the microstructure development of hydrating slag cement paste.  相似文献   

10.
吴丹琳  王培铭 《材料导报》2007,21(4):100-103
分析了水泥水化过程计算机模拟这一领域最有代表性的模拟系统--CEMHYD3D的建模过程,以CCRL Cement 133水泥为例,对不同水灰比条件下的水泥水化过程进行了实际模拟计算,对水化热、水化程度、水化过程中主要反应物和产物的变化情况进行了预测.研究表明,CEMHYD3D的模拟结果与实验所揭示的规律一致性较好,尤其是该软件在物相成分变化规律方面的预测对于水化机理的研究很有意义.  相似文献   

11.
The microstructure of cement pastes, as revealed by SEM-BSE image analysis, was compared with a simulated structure generated by the University of Twente version of the CEMHYD3D hydration simulation model. The spatial array of unhydrated cement particles was simulated by the model. However, spatial features in capillary pore structure obtained by the simulation are different from the observed microstructure. This disagreement in the spatial structure is to be expected since there are fundamental differences in porosity as represented by the two methods. Only coarse pores are detected in the SEM examination while the total capillary porosity and its whole spatial distribution are virtually simulated in the model. A subset of the visible pores must be different in spatial statistics from the universal set of total porosity. Care must therefore be taken in interpreting agreement between simulation output and microscopically observed microstructure in images.  相似文献   

12.
13.
The density of cracks or size of fragments formed in hardened cement paste upon first drying is affected by specimen size as measured with a crack-impregnation technique in free shrinking specimens with a thickness of 4 cm. Fragment size on the drying surface increased with distance away from the specimen corner, resulting in smaller average surface crack densities in larger specimens. Size effect on three- dimensional crack density, that was measured from sections through the impregnated specimens, was weaker. The size effect is explained by higher residual thermal stresses in larger specimens due to the cement hydration process. For comparison a desiccation crack pattern in a 5-mm-thick cement paste layer on a marble substrate was studied. Residual thermal stresses in this specimen were probably low and a uniform crack-pattern with a Gaussian-like fragment size distribution formed.  相似文献   

14.
A hardened cement paste cured at room temperature, from which part of the evaporable water has been removed by vacuum drying, has been studied. The surface area has been shown to decrease with time depending upon the amount of evaporable water left in the paste. This change is the opposite of that usually observed during hydration and probably represents some collodial growth phenomena analogous to aging observed in other collodial gels. Both water vapor and nitrogen adsorption measurements have been used to show the effects of aging in cement paste.Wet or dry paste is shown to undergo less change than paste of intermediate evaporable water content, so that if surface area after storage is plotted as a function of evaporable water content, a curve with a minimum is obtained. With increasing storage temperature there is some indication that this minimum might shift towards lower water content.Aging is shown to occur during the initial drying of a cement paste, so that even the initial surface area of a cement paste depends upon the manner in which the paste has been dried.  相似文献   

15.
魏亚  高翔  梁思明 《复合材料学报》2017,34(5):1122-1129
采用纳米原位压痕手段测量硬化水泥净浆中单一相态的代表性微观力学性能,并采用纳米点阵压痕研究各相态的含量。研究对象囊括水灰比为0.3、0.4、0.5的纯水泥净浆和水灰比为0.3情况下含50%、70%矿渣掺量复合体系,共5种配比,以表征它们的相态分布和微观力学性质的异同点。掺矿渣的试件中含有明显多的复合相,因此提出三相模型测算复合相中未水化物的体积分数。此外,提出基于纳米压痕技术计算纯水泥和掺矿渣水泥试件水化程度的方法,结果吻合于热重分析的结果,其中纯水泥净浆中复合相较少,计算得到的水化程度优于对掺矿渣水泥试件的计算。  相似文献   

16.
Ultrasonic wave reflection (UWR), well established for the study of stiffening and strength development of cement-based materials, normally uses shear waves (S-waves) because they are sensitive to microstructural development. This study demonstrates possible application of UWR with longitudinal waves (P-waves) using a low impedance buffer for investigating stiffening in hydrating cement paste. The P-wave reflection coefficient was seen to increase modestly as hydration progressed. Also, the P-wave reflection coefficient showed higher values for pastes with lower water to cement ratios, which are primarily attributed to the higher density of low w/c pastes, and similar effects with addition of fly ash and entrained air. Partial debonding between paste and buffer was observed in most pastes at a time that coincided with final set as measured using S-waves; and the debonding appears to be associated with the development of pore water under-pressure that occurs after solidification (due to chemical shrinkage).  相似文献   

17.
A 3D numerical modelling platform (MuMoCC) developed in a previous work by the authors is applied in this paper to investigate the effect of leaching of some solid phases of cement paste (portlandite and hydrated aluminates or sulfoaluminate phases) on the mechanical and diffusivity performances of cement paste and mortar. The platform is based on a multi-scale approach and uses two numerical tools. First, NIST’s CEMHYD3D code is used to simulate 3D Representative Volume Elements of cement paste and mortar. Then mechanical and diffusivity behaviour of the numerical materials are simulated using ABAQUS software. The proposed three-dimensional heterogonous model presents at least two advantages. Firstly, it is able to capture the complexity of the random microstructure of cement-based materials. Secondly, only a few parameters have to be fitted compared to the other existing models, which indicates the relevance of the model. The numerical simulations of leached cement paste and mortar performance highlight and quantify the significant effect of portlandite and hydrated aluminate and sulfoaluminate phases’ dissolution on the decrease of elastic modulus and compressive strength and on the increase of ductility and diffusivity. The numerical results show that the leaching of portlandite decreases the compressive strength of a w/c = 0.4 cement paste by a factor of 1.33. The dissolution of portlandite and hydrated aluminates or sulfoaluminate phases involves a decrease by a more important factor (1.86).The leaching of portlandite phase involves an important increase, by a factor of 31, of the effective diffusion coefficient.Using the developed multi-scale modelling and knowing the leaching kinetics values, the mechanical and diffusion performances of cement-based materials can be estimated correctly according to leaching duration.  相似文献   

18.
Concrete is a mixture of cement, water and aggregates. In terms of microstructure, besides the cement paste matrix and aggregate inclusions, there is a third phase, which is called the interfacial transition zone (ITZ), which forms due to the wall effect and can be thought of as a thin shell that randomly forms around each aggregate. Thus, concrete can be viewed as a bulk paste matrix containing composite inclusions. To compute the elastic properties of a concrete composite, a differential effective medium theory (D-EMT) is used in this study by assigning elastic moduli to corresponding bulk paste matrix, ITZ and aggregate. In this special D-EMT, each aggregate particle, surrounded by a shell of ITZ of uniform thickness and properties, is mapped onto an effective particle with uniform elastic moduli. The resulting simpler composite, with a bulk paste matrix, is then treated by the usual D-EMT. This study shows that to assure the accuracy of the D-EMT calculation, it is important to consider the increase in the water:cement mass ratio (w/c) of the ITZ and the corresponding decrease in w/c ratio of the bulk matrix. Because of this difference in w/c ratio, the contrast of elastic moduli between the ITZ and the bulk paste matrix needs to be considered as a function of hydration age. The Virtual Cement and Concrete Testing Laboratory (VCCTL) cement hydration module is used to simulate the microstructure of cement paste both inside and outside the ITZ. The redistribution of calcium hydroxide between ITZ and bulk paste regions can further affect the elastic contrast between ITZ and bulk paste. The elastic properties of these two regions are computed with a finite element technique and used as input into the D-EMT calculation. The D-EMT predictions of the elastic properties of concrete composites are compared with the results measured directly with a resonant frequency method on corresponding composites. This comparison shows that the D-EMT predictions agree well with experimental measurements of the elastic properties of a variety of concrete mixtures.  相似文献   

19.
氧化石墨烯(GO)表面富有大量的含氧基团,具有良好的亲水性,是新型纳米碳材料,会对水泥水化产物的形状及聚集态造成影响。本文将多层GO和水超声分散后形成GO分散液,对不同GO掺量的新拌水泥浆体的自收缩进行测试,并采用氮吸附法对其孔隙结构进行表征。结果表明,掺入GO会增加凝胶孔中的自由水,加快水泥水化速率,增大自收缩,且随着掺量的增加,自收缩会更加明显。由迟滞效应的特征推论出GO使得水泥浆体内部的孔隙呈现狭缝形。根据Kelvin方程的BJH法进行孔分布分析,探索GO对自收缩的调控机理。发现GO有助于细化内部孔径,使水泥浆体内部的大毛细孔向着小毛细孔转变,导致毛细孔压力增加,进而增加了水泥基复合材料的自收缩。  相似文献   

20.
水泥水化过程的细观力学模型与性能演化   总被引:2,自引:1,他引:1       下载免费PDF全文
基于水泥水化过程的实验测量数据, 建立了一个研究水泥水化过程的细观结构和有效性能演化的细观力学模型。该模型由未水化的水泥颗粒、水泥凝胶和孔洞三相介质组成, 并假设细观结构呈周期性均匀分布。随着水化过程的进行, 模型中的组份是连续变化的, 并与实验测量的组份含量完全一致。利用本文中模型和均匀化方法(直接平均法和二尺度展开法) 计算了水泥浆体在各瞬时的杨氏模量和泊松比。研究表明, 在水泥的水化过程中, 水泥浆体的弹性性能随水化度而变化, 其变化规律和精度与现有的实验数据符合很好。该方法可容易地推广到三维情况和其他水化介质。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号