首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 531 毫秒
1.
用直流电沉积(DC)、脉冲电沉积(PC)技术在低碳钢表面制备Ni-Cr合金镀层,采用X射线衍射(XRD)、扫描电镜(SEM)、原子力显微镜(AFM)等方法,研究了电沉积方式对合金镀层晶粒结构和表面形貌的影响;用浸泡法和电化学极化法测试了合金镀层在3.5%(质量分数)Na Cl溶液中的耐蚀性。结果表明,电沉积方式对镀层结构和性能有较大影响:PC方式得到的合金镀层,其纳米晶尺寸更小(由45 nm减小为26 nm),镀层表面致密性更高;表现在性能上,与DC相比,PC合金镀层的显微硬度更大(由7000 MPa增加到8250 MPa),耐蚀性更好(自腐蚀电位由–0.624V正移到–0.477 V,腐蚀电流密度由1.911×10~(-4)A/cm~2减小到2.587×10~(-5) A/cm~2)。  相似文献   

2.
薛燕  王振国 《表面技术》2017,46(7):91-96
目的提高镁合金的耐蚀性和耐磨性。方法以AZ91D镁合金为基体,采用SiC颗粒质量浓度为3 g/L的Ni-P化学镀溶液,在其表面沉积不同时间,制备Ni-P-SiC复合镀层。通过扫描电子显微镜(SEM)、显微硬度测试、粗糙度仪、电化学腐蚀和磨损等试验来分析和评价Ni-P-SiC复合镀层的厚度、表面粗糙度、显微硬度、耐腐蚀性能和耐磨性能。结果 Ni-P-SiC复合镀层的厚度和表面粗糙度随沉积时间增加而增加,沉积时间为150 min时,镀层厚度可达53μm,表面粗糙度为2.5μm。沉积时间为120 min时,镀层的显微硬度最高,为641HV,此时复合镀层的耐蚀性和耐磨性最好,自腐蚀电位高达-0.73 V,腐蚀电流密度为0.78μA/cm~2,磨损体积最小,为1.04×10~(-3)mm~3。与AZ91D镁合金基体相比,沉积复合镀层后的样品更耐蚀,说明复合镀层有效改善了镁合金基体的耐蚀性。结论沉积时间对Ni-P-SiC复合镀层的性能有一定影响,在沉积时间为120 min时获得的复合镀层具有较好的耐蚀性和耐磨性。  相似文献   

3.
金辉  陈立佳  王一雍  王璐 《表面技术》2017,46(10):115-119
目的提高Ni-Co-CeO_2纳米复合镀层的显微硬度及耐腐蚀性能。方法利用超声技术,采用电沉积方法制备Ni-Co-CeO_2纳米复合镀层。通过正交实验方法,对Ni~(2+)、Co~(2+)及纳米颗粒共沉积工艺实验进行研究,以显微维氏硬度作为考察指标,通过极差分析确定电沉积的最佳工艺条件,利用极化曲线研究纳米复合镀层在3.5%NaC l水溶液中的耐腐蚀性能。通过XRD分析纳米复合镀层的相组成,采用SEM、EDAX研究纳米复合镀层的微观形貌和元素组成。结果通过超声场的超声空化作用,将纳米稀土CeO_2弥散分布于镀层中,使镀层晶粒细化,镀层硬度由264.34HV上升到486.82HV,同时镀层的耐蚀性能也有所提高,自腐蚀电流密度由6.305μA/cm~2减小至2.012μA/cm~2。结论由正交实验结果得出,在超声功率为160 W的实验条件下,制备镀层的最佳工艺条件为:镀液温度55℃,电流密度2 A/dm~2,纳米稀土CeO_2加入量1 g/L,pH值5。最佳工艺条件下制备的镀层表面致密均匀,硬度和耐腐蚀性均有明显提高。  相似文献   

4.
为了得到性能优异的复合镀层,在镀液中添加不同粒径的石墨烯,采用复合电沉积技术,制备了Ni-Co-石墨烯复合镀层。表征了镀层的表面形貌、相结构、显微硬度、耐磨性和耐蚀性能,并同Ni-Co合金对比。结果显示,石墨烯很好地嵌入到了镀层中,而且石墨烯的存在并没有改变镀层基质的晶体结构;添加石墨烯提高了复合镀层的显微硬度(HV),最高可达8050 MPa;降低了复合镀层的摩擦系数,在一定程度上减少了粘着磨损的面积;复合镀层的自腐蚀电流密度为1.0905×10~(-5 )A/cm~2,低于Ni-Co合金镀层的自腐蚀电流密度1.8298×10~(-5 )A/cm~2。石墨烯的添加提高了复合镀层的硬度,耐磨性和耐蚀性。  相似文献   

5.
柠檬酸铵浓度对脉冲电镀Ni-Cr-Mo合金镀层的影响   总被引:1,自引:2,他引:1  
目的揭示柠檬酸铵浓度对脉冲电镀Ni-Cr-Mo合金镀层元素含量、沉积速率、表面形貌和耐蚀性的影响规律。方法采用脉冲电镀法在Q235钢表面制备Ni-Cr-Mo合金镀层,利用辉光放电光谱仪、扫描电镜、Tafel曲线和电化学阻抗谱考察柠檬酸铵浓度对镀层元素含量、沉积速率、表面形貌和耐蚀性的影响。结果随柠檬酸铵浓度的增大,镀层镍含量减小,铬、钼含量增大,镀层沉积速率减小,镀层表面颗粒的尺寸减小,镀层在3.5%Na Cl溶液中的耐蚀性先增强后减弱。结论柠檬酸铵质量浓度为196 g/L时,镀层具有最大的自腐蚀电位(-0.537 V)、最小的腐蚀电流密度(0.313μA/cm~2)和最大的电荷转移电阻(2075?·cm~2),耐蚀性最好。  相似文献   

6.
为了得到性能更加优异全面的复合镀层,使用复合电沉积技术制备不同石墨烯颗粒大小的Ni-Co-石墨烯复合镀层,并制备了Ni-Co合金镀层。测试镀层的表面形貌,相结构,显微硬度,耐磨性和耐蚀性能。结果显示,石墨烯在电沉积中很好的嵌入到了镀层基质中,而且石墨烯的存在并没有改变镀层基质的晶体结构;石墨烯的填加增加了复合镀层的显微硬度,最高可达805HV;降低了复合镀层的摩擦系数,在一定程度上减少了粘着磨损的面积;复合镀层的自腐蚀电流密度可以降低到1.0905×10-5A/cm2,低于Ni-Co合金镀层的自腐蚀电流密度。说明了石墨烯的添加增强了复合镀层的硬度,耐磨性和耐蚀性。  相似文献   

7.
刘伟  常立民  段小月 《表面技术》2009,38(5):29-31,54
采用超声-电沉积方式制备Ni—Al2O3复合镀层。利用X-射线衍射仪、扫描电子显微镜、硬度仪以及摩擦磨损实验仪对复合镀层的组织结构、宏观残余应力、表面形貌、微观硬度以及摩擦磨损性能等进行研究。实验结果表明:适当的超声波作用使复合镀层基质金属Ni的晶粒细化,复合镀层的硬度提高,但也相应地增加了镀层的宏观残余应力;超声波-电沉积复合镀层的表面致密平整,镀层中粒子团聚现象减少,粒子分布更加均匀;超声-电沉积复合镀层的耐磨性明显优于单独电沉积复合镀层。  相似文献   

8.
电沉积方式对Ni-CeO_2纳米复合镀层摩擦磨损性能的影响   总被引:2,自引:0,他引:2  
采用直流电沉积、脉冲电沉积和超声辅助脉冲电沉积制备Ni-CeO2纳米复合镀层,研究电沉积方式对纳米复合镀层表面形貌、显微硬度和摩擦磨损性能的影响,并用扫描电子显微镜分析其磨损机理。结果表明:电沉积方式对Ni-CeO2纳米复合镀层的晶粒尺寸和性能有较大影响;当超声波引入脉冲电沉积过程时,超声波的强力搅拌作用和超声空化效应能促进CeO2纳米颗粒在镀层中均匀分布,进一步减小镀层的晶粒尺寸,明显提高镀层的显微硬度,从而改善镀层的摩擦磨损性能;Ni-CeO2纳米复合镀层的摩擦磨损性能均优于纯Ni镀层的;而超声辅助脉冲电沉积制备的Ni-CeO2纳米复合镀层的晶粒更加细小、显微硬度最高,其摩擦因数最低,耐磨损性能最佳。  相似文献   

9.
为提高1060铝合金的耐腐蚀性能和耐磨性能,采用电化学技术、SEM和XRD等方法,研究了柠檬酸对1060铝合金化学镀Ni-W-P镀液的沉积速率、镀层的孔隙率、腐蚀电位、交流阻抗、维氏硬度、形貌等的影响。结果表明,添加柠檬酸,镀液沉积速率有所降低,但是,Ni-W-P镀层的表面平滑光亮,结合力良好,耐蚀性提高。当柠檬酸含量为25 g/L时,镀层的点滴液变色时间最长,为605 s,镀层的孔隙率为0,腐蚀电流密度最小(2.95μA/cm~2),腐蚀电位最大,为-0.384 V,比1060铝合金的正移0.889 V,腐蚀倾向变小。镀层呈典型的花椰菜包状物结构,添加柠檬酸之后,包状物细化,镀层组织结构更紧密均匀,无孔隙,镀层磷含量提高,使镀层由非晶态和微晶构成的混晶结构向非晶态转变,是其耐蚀性高的重要原因,提高钨含量使镀层硬度增加,为174 HV,是1060铝合金基体的4倍。  相似文献   

10.
利用喷射电沉积技术制备了Ni-Fe-Co-P-CeO_2复合镀层。通过SEM、XRD、EDS等测试了复合镀层的表面形貌、截面形貌、物相结构和组成成分,同时,表征了复合镀层的硬度、耐磨和耐蚀性能,探究和分析了纳米稀土CeO_2颗粒浓度对镀层性能的影响。结果表明:该多元复合镀层为非晶态结构;随着镀液中CeO_2颗粒浓度的增加,复合镀层的显微硬度、耐磨性和耐蚀性均呈先增强后减弱的趋势;镀液中CeO_2颗粒浓度为1 g/L时,复合镀层的表面均匀致密,其HV_(0.1)显微硬度达到最大值5982 MPa,且具有最优的耐磨和耐蚀性能。  相似文献   

11.
魏超  任婷 《表面技术》2017,46(3):91-95
目的提高化学镀的效率,改善镀层的性能。方法采用普通化学镀镀液配方,选择超声波功率为90~150 W,频率为20、40 k Hz,研究了不同超声波条件对化学镀Ni-P合金镀层的影响。通过沉积速率、孔隙率、显微硬度、XRD、SEM及EDS等表征方法分析超声波的功率、频率对镀层各项性能的影响。结果超声波辅助化学镀的镀层表面质量得到改善,孔隙率明显降低,沉积速率明显提高。沉积速率随功率和频率的增大而升高,其中超声波频率40 k Hz、功率150 W的条件下镀速最高,为15μm/h,与水浴条件下的8.2μm/h相比提高了83%。镀层的硬度随超声波功率、频率的增大而提高,最高达到585 HV,比水浴条件下的468HV提高了25%。此外,超声波会改变镀层的P含量,提高镀层的结晶性。结论超声波辅助可以提高化学镀的镀速,改善镀层的性能。在超声波频率为40 k Hz、功率为150 W的条件下,镀层综合质量达到最佳,其抗腐蚀性能提高,最具实用性。  相似文献   

12.
锡青铜化学镀 Ni-P 合金工艺及镀层性能   总被引:1,自引:0,他引:1  
目的在锡青铜基体上化学镀Ni-P合金镀层,提高锡青铜的耐磨性和耐腐蚀性。方法以酸性含锌活化液活化锡青铜试样,在相同的条件下实施化学镀,并对镀态试样进行不同温度(250,400,500℃)下的热处理。对比基体、镀态试样和热处理试样的性能,研究热处理温度对锡青铜化学镀Ni-P合金层微观结构、显微硬度、耐磨性和耐腐蚀性的影响。结果锡青铜表面形成了Ni-P合金镀层,并且镀层无孔隙缺陷,与基体结合良好,沉积速率较快,为10.00μm/h。经热处理后,镀层的微观结构由非晶态向晶态转变,在500℃热处理的镀层显微硬度最大,耐磨性最好。镀态镀层和经250℃热处理的镀层在10%HNO3溶液和10%H2SO4溶液(10%均为体积分数)中的耐腐蚀性明显好于锡青铜基体,镀态镀层在两种介质溶液中的腐蚀速率分别为0.225,0.146 mg/(cm2·d)。结论采用酸性含锌活化液活化锡青铜基体,可以在锡青铜表面制备出化学镀Ni-P合金镀层,且镀覆效果较好。这表明紫铜化学镀Ni-P合金工艺同样适用于锡青铜。  相似文献   

13.
目的在N2及其与C2H2混合气氛下,制备VN基硬质耐磨涂层,研究VN基涂层的结构及力学、耐磨、抗腐蚀性能,为工业化应用积累科学数据。方法采用阳极层离子源辅助阴极电弧离子镀系统,在高速钢衬底上制备VN、VCN和VCN/VN多层涂层,系统研究多层涂层调制周期厚度变化对涂层晶体结构、表面形貌、硬度、耐磨性及耐腐蚀性能的影响。结果 C原子的加入和VCN/VN多层涂层调制周期的变化对VCN/VN涂层的晶体结构、表面形貌、硬度、摩擦系数及耐腐蚀性能均有明显影响。随着VCN/VN涂层调制周期的增加,VN(200)衍射峰逐渐减弱并宽化,VN (111)衍射峰消失,涂层表面金属熔滴大颗粒数量减少,小颗粒数量明显增加。VN涂层硬度为1890HV,VCN涂层硬度为2290HV,VN/VCN多层涂层硬度为2350HV左右。对磨材料为氧化铝时,VN涂层的摩擦系数为0.74左右,VCN涂层和VCN/VN涂层的摩擦系数明显降低,在0.60左右,磨损机理由以磨削磨损为主(VN涂层)逐渐转化为粘着磨损为主(S5),磨削磨损起次要作用。随着C原子的加入和VCN/VN多层涂层调制周期的变化,涂层耐腐蚀性能明显增强,自腐蚀电位由VN的-0.26 V增大到VCN的-0.14 V,自腐蚀电流密度由1.63′10-5 A/cm^2降低到2.7′10(-6) A/cm^2。结论采用阳极层离子源辅助电弧离子镀技术可制备VN基硬质耐磨涂层,C元素的加入可有效提高VN涂层的硬度,降低VN涂层的摩擦系数,增强VN涂层的耐腐蚀性能。VCN/VN多层涂层通过周期厚度的调制可以有效提高VN基涂层的硬度、耐磨及耐腐蚀性能。  相似文献   

14.
目的强化Ni基镀层并确定Al_2O_3尺寸对复合镀层性能的影响。方法在以硬度为评价标准的最佳工艺条件下,制备了三种尺寸的Al2O3(微米级、50 nm、30 nm)复合镀层,研究分析了不同尺寸Al_2O_3复合镀层的表面形貌、显微硬度、耐磨、耐蚀等性能。结果纳米复合镀层的表面形貌比微米复合镀层更光滑、平整、致密,晶粒更细小。Al_2O_3微粒尺寸越小,镀层越致密。纳米复合镀层的显微硬度、耐磨性能、耐蚀性能、抗高温氧化等性能均优于微米复合镀层及纯Ni镀层。热处理后的纳米复合镀层表面更加平整致密,热处理能显著提高镀层的显微硬度。50 nm复合镀层在保温温度为400℃时达显微硬度最大值461HV,30 nm复合镀层在保温温度为500℃时达显微硬度最大值496HV。热处理对纳米复合镀层的耐磨性能改善不明显。结论 Al_2O_3的尺寸越小,复合镀层的性能越好。  相似文献   

15.
首先,将预处理后的合金样品在碱式碳酸镍溶液中进行预镀,目的是在镁锂合金表面形成一层Ni-P合金薄膜;然后,在硫酸镍溶液中进行二次镀覆,获得具有保护作用的镀层。对获得的镀层的表面形貌、结构和抗腐蚀能力进行研究。结果表明:采用该方法能够在镁锂合金表面形成平整、光亮、致密的镀层,镀层与基体结合良好。镀层中磷含量达到13.56%(质量分数),镀层的维氏硬度约为HV549。极化曲线测试表明,Ni-P镀层的腐蚀电位升高至-0.249V(vsSCE),并有一个很宽的钝化区,这种现象显示该镀层具有良好的抗腐蚀能力。  相似文献   

16.
温度对化学镀 Ni-P 合金层形貌、硬度及耐蚀性的影响   总被引:5,自引:5,他引:0  
金永中  杨奎  曾宪光  倪涛  丁松 《表面技术》2015,44(4):23-26,31
目的揭示在70~95℃施镀温度范围,Ni-P合金镀层显微形貌的变化规律,并探讨表面形貌结构、合金硬度及耐蚀性能的相关性。方法以施镀温度为变量,通过化学沉积的方法制备Ni-P合金镀层。对镀层表面形貌进行表征,测试镀层硬度,并采用盐酸为腐蚀介质进行浸泡,以相对腐蚀速率表征镀层的耐蚀性。结果在70~95℃的施镀温度范围内,随着温度升高,镀层形貌先趋于致密和平整,而后表面粗化,镀层的硬度和耐蚀性均呈现先提高、后降低的趋势。最佳镀层形貌和硬度值出现在85℃,耐蚀性最好的施镀温度区间为85~90℃。结论当镀液p H值为4.5±0.1,施镀时间为3 h时,施镀的最佳温度为85℃。此条件下制备的镀层表面平整且均匀致密,硬度高,耐蚀性能优异。  相似文献   

17.
薛燕  王振国 《表面技术》2017,46(3):79-83
目的提高镁合金表面Ni-P-SiC复合镀层的耐腐蚀性能和耐磨性能。方法采用加入SiC微粒的Ni-P化学镀溶液,在AZ91D镁合金表面制备Ni-P-SiC复合镀层,并在不同温度下进行热处理,通过X射线衍射(XRD)、显微硬度测试、电化学腐蚀测试和摩擦磨损实验等方法分析和评价镀层的组织构成、显微硬度、耐腐蚀性能和耐磨性能。结果 Ni-P-SiC复合镀层经320℃热处理后,组织结构由非晶向晶体转变,并伴随有Ni3P相的析出。此温度下热处理的Ni-P-SiC复合镀层:显微硬度最高,可达1120HV,为未热处理时显微硬度(620HV)的1.81倍;自腐蚀电位为–0.697 V,较未热处理样品的(–0.727 V)有所提高;腐蚀电流密度基本最小,为0.984μA/cm~(–2);磨损体积最小,为0.324×10~(–3) mm~3。340℃热处理的复合镀层则磨损体积最大,为1.43×10~(–3) mm~3。结论在AZ91D镁合金表面制备的Ni-P-SiC复合镀层经过320℃热处理保温1 h后,复合镀层的硬度、耐腐蚀性能和耐磨性能均有所提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号