首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 430 毫秒
1.
在水工结构模型试验研究过程中,主要采用表面位移计、电阻应变片等仪器对坝体的位移和应变、坝基以及抗力体的位移进行测试。而对于模型在超载作用下产生的内部变形,传统的监测仪器难以准确测定。本研究以某重力坝段为基础,在坝体和坝基分别埋设光纤光栅传感器,对结构模型在超载之后的内部位移进行监测,同时安装于大坝表面的位移计、电阻应变片对该物理模型进行了变形监测。通过光纤传感器和位移计对坝体和坝基位移的监测结果进行比较分析,表明其在对应部位的监测结果较为一致,说明了光纤光栅传感器在重力坝结构模型试验应用中的可行性。试验结果揭示了超载系数约为6.0, 同时得到了重力坝结构模型在超载作用下的破坏机理。光纤光栅传感技术在水工结构模型试验中的成功应用有助于我们更充分了解坝体和坝基在加荷作用下的内部变形情况。  相似文献   

2.
在水工结构模型试验研究过程中,主要采用表面位移计、电阻应变片等仪器对坝体的位移和应变、坝基以及抗力体的位移进行测试,而传统的监测仪器难以准确测定模型的内部变形。以某重力坝段为基础,在坝体和坝基分别埋设光纤光栅传感器,对结构模型在超载过程中的内部位移进行监测,并采用位移计、电阻应变片对该物理模型进行了变形监测。通过光纤传感器和位移计对坝体和坝基位移的监测结果比较分析,表明两者在对应部位的监测结果较为一致,证明了光纤光栅传感器在重力坝结构模型试验应用中的可行性,同时试验结果揭示了坝基超载安全系数约为6.0,以及在超载作用条件下的坝基破坏机理。  相似文献   

3.
城轨连续梁高架桥梁缝和钢轨伸缩调节器的轨温、钢轨位移、梁体位移、钢轨和尖轨应变监测采用了光纤光栅传感技术。通过监测,使运营和管理部门掌握桥梁和钢轨在长期运行过程中结构的变化规律,以确保城轨的运行安全。应变检测采用预制的光栅应变片;位移检测采用受力环的光栅位移传感器;温度检测采用管状光栅温度传感器。参考光栅的应用抵消了环境温度变化产生的影响。全部光纤光栅悬空粘贴,避免了布喇格反射峰的啁啾化,提高了检测精度。几种传感器经历了冷热气候的检验,监测结果与手测值以及理论计算值相吻合。  相似文献   

4.
FBG传感技术在大坝安全监测中的应用研究   总被引:3,自引:2,他引:3  
在阐述光纤布喇格光栅(FBG)传感器工作原理的基础上,研究了光纤光栅传感器在混凝土结构中的埋设技术。通过对混凝土结构施加载荷,探讨了光纤光栅传感器对混凝土结构内部应力应变变化的监测技术,并与振弦式应变传感器的监测结果进行了对比分析。结果表明:FBG传感器具有更高的精度和灵敏度,可实现绝对数值测量,抗干扰能力强,结构简单,长期稳定性好,能实现实时、在线监测。该技术在大坝安全监测方面具有广泛的应用前景。  相似文献   

5.
深部巷道围岩破裂模型试验变形量测研究   总被引:1,自引:0,他引:1  
针对地质力学模型试验内部变形难以精确量测的难题,以深部巷道围岩破裂模型试验为基础,在模型中布置了布拉格光纤光栅应变传感器和光栅尺位移传感器,对巷道围岩内部的应变和位移进行监测,并布置了电阻应变砖进行对比分析.研究成果表明:1)电阻应变砖、布拉格光纤光栅应变传感器和光栅尺位移传感器测得的围岩内部变形规律基本一致,将光纤光栅应变传感器和光栅尺位移传感器应用于模型试验的内部变形量测是可行的;2)光栅尺位移传感器精度可达到0.001 mm,且具有制作简单、稳定性强、不易损坏等优点,在模型试验中具有广泛的应用前景;3)3种量测手段均揭示出深部巷道围岩内部变形呈现波峰与波谷交替变化,这与模型断面出现的破裂区与非破裂区交替破裂现象相吻合.  相似文献   

6.
基于重大工程结构健康监测的高精度要求,光纤光栅传感技术应运而生。文中首先讨论了光纤光栅用于混凝土结构健康监测的两项关键技术:光纤光栅传感器的安装工艺和消除光纤光栅交叉的敏感性,然后在粘钢加固混凝土立柱上进行了加载试验研究,同时与粘贴在相同位置的电阻应变片进行了对比,实验结果证明了用光纤光栅传感器进行结构健康监测这一方法的可行性和先进性。  相似文献   

7.
光纤光栅在预应力钢绞线应力监测中的应用   总被引:3,自引:1,他引:3  
钢绞线是预应力混凝土结构中应用最广泛的预应力筋,服役期间处于高应力应变状态,易受应力腐蚀,存在安全隐患,因此,对其应力状态进行监测具有重大意义.研究裸光栅和FRP筋封装光纤光栅的应变传感性能和温敏特性,在此基础上进行光纤光栅监测钢绞线应力的试验研究,并研制了光纤光栅智能钢绞线.结果表明:采用光纤光栅监测预应力钢绞线应力是可行的,由于裸光纤光栅比较脆弱且传感量程较小,只适用于张拉后的预应力筋,FRP筋封装光纤光栅可用于大应力应变预应力筋的监测.  相似文献   

8.
近年来,光纤光栅传感技术在我国发展很快,已经在桥梁、土建等多个领域中得到了应用,但在水工领域的应用还很少.本文结合白鹤梁工程实例,探索该项技术在这一领域应用的可行性.开展的光纤光栅应变、温度传感器在水下工程领域中较大规模的应用研究结果表明:FBG具有很好的防水性能,测试精度高,长期稳定性好,信号传输距离远,为水下结构的长期监测提供了一种可靠有效的手段.  相似文献   

9.
近年来,光纤光栅传感技术在我国发展很快,已经在桥梁、土建等多个领域中得到了应用,但在水工领域的应用还很少.本文结合白鹤梁工程实例,探索该项技术在这一领域应用的可行性.开展的光纤光栅应变、温度传感器在水下工程领域中较大规模的应用研究结果表明:FBG具有很好的防水性能,测试精度高,长期稳定性好,信号传输距离远,为水下结构的长期监测提供了一种可靠有效的手段.  相似文献   

10.
提出了一种基于光纤布拉格光栅(FBG)的微位移传感器。该器件由一对中心波长不同的光纤布拉格光栅和一个杠杆结构的金属衬底组成,布拉格光栅采用飞秒激光相位掩模法制作。被测物体的位移由杠杆结构放大,并转换为布拉格光栅的轴向拉力。通过理论分析和有限元模拟获得的放大系数分别为2.67和2.5。实验结果表明,在0至50μm范围内,光纤光栅中心波长的偏移与被测物体的位移呈线性关系,位移灵敏度达到121 pm/μm。级联的布拉格光栅可用于温度补偿。  相似文献   

11.
新型光纤Bragg光栅锚索预应力监测系统   总被引:9,自引:1,他引:9  
针对预应力锚索检测的问题,在分析预应力传感器研究现状的基础上,提出了采用光纤Bragg光栅传感技术进行锚索监测的新方案,详细介绍了光纤Bragg光栅锚索预应力监测系统的工作原理及主要构成、进行了工程现场与常规的电测技术的对比实验。结果表明:光纤Bragg光栅传感器具有高的精度,抗干扰能力强,结构简单,长期稳定性高,实现实时、在线监测。  相似文献   

12.
设计了一种基于C形弹性管的光纤布喇格光栅传感结构.用管内过剩压力使弹性管的自由端产生位移和管表面产生的应力对光纤布喇格光栅反射波长进行调谐.得到了光纤布喇格光栅反射波长变化对应于压力和自由端位移的线性关系.在0~6MPa的压力范围内,光纤布喇格光栅反射波长随压力和位移均呈线性变化且压力和位移的传感灵敏度分别达到0.0305nm/MPa和0.0359nm/mm,线性调谐范围分别为0.183nm和0.215nm,波长分辨率分别为3.05pm和0.718pm.  相似文献   

13.
根据大型复杂结构监测的工程需求,研究超大容量光纤布拉格光栅传感网络的传感器查询与波长解调原理,设计了与虚拟仪器技术相结合的系统模型;在信号分析与处理、网络通信、数据存储等主要环节提出了与超大容量光纤光栅传感网络分析相适应的技术方案.通过实验验证,单台仪器的测量点数达到1 000点以上,分析速度在1 s之内,波长分辨率为±10 pm,应变量程±800×10-6,温度量程±100℃.实验表明,仪器的量程、精度、速度等指标均满足工程实践的要求.  相似文献   

14.
The digital monitoring principle and technologies for heavy duty mechanical equipment based on fiber Bragg grating (FBG) technology are introduced in this paper. The fundamentals of new-style FBG sensing technology, including the photorefractive effect of FBG, the physical formation, and the relation between optical properties and grating parameters, are investigated. The plaster, encapsulation and distribution planning of FBG sensor (FBGS), which is used to monitor heavy duty mechanical equipment under abominable environment and extreme conditions, are also studied. In addition, theoretical and experimental researches on the strain, temperature, displacement, and stress transmission characteristics between FBGS and detection interface are presented. The principle and method for temperature compensation in non-uniformity temperature field are described in detail as well. Comparing with the traditional sensing monitoring techniques, the application of FBGS technology on digital monitoring and diagnosis for heavy duty mechanical equipment has a number of significant technical advantages and will make a new breakthrough in this field.  相似文献   

15.
为了分析长标距光纤光栅(FBG)在轨道梁变形监测中的可靠性问题,建立共轭梁法计算模型,分析跨中挠度的模型误差.引入测量误差,得到不同FBG标距、不同测量误差下长标距FBG的变形监测精度.通过某高速轨道梁的现场测试实验,对长标距FBG的可靠性进行验证,提出2种传感器优化布置方案.结果表明,当布置的传感器数量大于8时,监测结果的误差控制在1%以内,考虑20%的测量误差,监测结果的误差可以控制在10%以内;现场实测的挠度与理论值的相对误差为2.01%,由此说明长标距FBG可以实现对高速交通轨道梁的高精度变形监测.  相似文献   

16.
为实现碳纤维复合材料对钢筋混凝土结构集先进加固与实时在线安全测评双重功能,将布拉格光栅光纤传感器固化于CFRP中.实验表明FBG与CFRP相容性及应变传感特性理想.根据钢筋混凝土结构理论和ANSYS有限元软件编制CFRP加固RC梁受弯荷载效应模拟计算程序.采用基于MATLAB的MonteCarlo计算程序,完成被加固结构可靠度模拟.制备的钢筋混凝土实验梁,采用预置FBG传感器的CFRP加固.梁内部钢筋粘结FBG传感器,压区混凝土上粘接电阻应变片.实验表明:全部实验梁承载过程中,根据CFRP中FBG的实时应变值,通过编制模拟计算程序得到实验梁内部受拉钢筋、压区混凝土应变与实测值较好吻合.据此不仅补偿了在已建成结构内部不能再装置传感器的限制,而且可实时判断加固结构的损伤状态,完成安全测评.  相似文献   

17.
介绍了一种光电传感器的工作原理及特点,阐明了这种传感装置用于土木工程参数测量的优越性.试验表明:此类传感器精度高,稳定性强,重复性和长期性能好,适用于土木工程位移量的监测,满足大型结构信号测量精度和量程两方面的要求.  相似文献   

18.
1 IntroductionThereinforcementandrenovationofagedanddam agedreinforcedconcretestructureisanimportantprojectincivilengineering .Underthecircumstancesofdistur bancesuchastemperature ,humidityandelectromagneticfield ,thesensingelementssuchasresistancestrainfoilinelectronicdetectionmethodwhichisbroadlyappliedinreinforcementdetectionsystem ,haveaweakanti interfer enceabilityandabadlong termstabilityandaccuracy .Thetraditionaldetectionmethodscannotcarryoutalong termandrealtimedetectiononstrengthene…  相似文献   

19.
目的为了验证光纤光栅传感器在大型桥梁工程监测尤其是施工监测中的精确性及可行性,探寻桥梁施工监测中的新型传感技术.方法基于东营黄河大桥全寿命监测的系统构架,将大量的光纤FBG传感器布设在该桥关键断面上,用以监测施工及运营阶段的结构应变及温度.在主梁纵向预应力张拉过程中,用光纤光栅解调仪及其配套数据采集设备,对控制点上的传感器的中心波长信号进行了跟踪采集,进而得到了测点的应变时程曲线.结果通过建立施工过程的有限元模型,将监测值与理论计算值进行对比,并对二者之间的相对误差进行分析.发现监测值与理论计算值基本吻合,二者之间的相对误差随着预应力钢束的增长而增大,但最大仅为11.4%.结论光纤FBG传感器监测精度较高,可用于大型桥梁施工过程的应变监测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号